May  2014, 34(5): 2013-2036. doi: 10.3934/dcds.2014.34.2013

Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps

1. 

Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076, Singapore, Singapore

Received  September 2012 Revised  August 2013 Published  October 2013

We consider skew-products of quadratic maps over certain Misiurewicz-Thurston maps and study their statistical properties. We prove that, when the coupling function is a polynomial of odd degree, such a system admits two positive Lyapunov exponents almost everywhere and a unique absolutely continuous invariant probability measure.
Citation: Rui Gao, Weixiao Shen. Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2013-2036. doi: 10.3934/dcds.2014.34.2013
References:
[1]

J. F. Alves, A survey of recent results on some statistical features of non-uniformly expanding maps, Discrete Contin. Dyn. Syst., 15 (2006), 1-20. doi: 10.3934/dcds.2006.15.1.

[2]

J. F. Alves, SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. École Norm. Sup. (4), 33 (2000), 1-32. doi: 10.1016/S0012-9593(00)00101-4.

[3]

J. F. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398. doi: 10.1007/s002220000057.

[4]

J. F. Alves and D. Schnellmann, Ergodic properties of Viana-like maps with singularities in the base dynamics, Proc. Amer. Math. Soc., 141 (2013), 3943-3955. doi: 10.1090/S0002-9939-2013-11680-1.

[5]

J. F. Alves and M. Viana, Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems, 22 (2002), 1-32. doi: 10.1017/S0143385702000019.

[6]

J. Buzzi, O. Sester and M. Tsujii, Weakly expanding skew-product of quadratic maps, Ergodic Theory Dynam. Systems, 23 (2003), 1401-1414. doi: 10.1017/S0143385702001694.

[7]

L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.

[8]

W. Huang and W. Shen, Analytic skew products of quadratic polynomials over circle expanding maps, Nonlinearity, 26 (2013), 389-404. doi: 10.1088/0951-7715/26/2/389.

[9]

J. Milnor, Dynamics in One Complex Variable, Third Edition, Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006.

[10]

T. Nowicki, Symmetric $S$-unimodal mappings and positive Liapunov exponents, Ergodic Theory Dynam. Systems, 5 (1985), 611-616. doi: 10.1017/S0143385700003199.

[11]

D. Schnellmann, Non-continuous weakly expanding skew-products of quadratic maps with two positive Lyapunov exponents, Ergodic Theory Dynam. Systems, 28 (2008), 245-266. doi: 10.1017/S0143385707000429.

[12]

D. Schnellmann, Positive Lyapunov exponents for quadratic skew-products over a Misiurewicz-Thurston map, Nonlinearity, 22 (2009), 2681-2695. doi: 10.1088/0951-7715/22/11/006.

[13]

M. Viana, Multidimensional nonhyperbolic attractors, Inst. Hautes Études Sci. Publ. Math., 85 (1997), 63-96. doi: 10.1007/BF02699535.

show all references

References:
[1]

J. F. Alves, A survey of recent results on some statistical features of non-uniformly expanding maps, Discrete Contin. Dyn. Syst., 15 (2006), 1-20. doi: 10.3934/dcds.2006.15.1.

[2]

J. F. Alves, SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. École Norm. Sup. (4), 33 (2000), 1-32. doi: 10.1016/S0012-9593(00)00101-4.

[3]

J. F. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398. doi: 10.1007/s002220000057.

[4]

J. F. Alves and D. Schnellmann, Ergodic properties of Viana-like maps with singularities in the base dynamics, Proc. Amer. Math. Soc., 141 (2013), 3943-3955. doi: 10.1090/S0002-9939-2013-11680-1.

[5]

J. F. Alves and M. Viana, Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems, 22 (2002), 1-32. doi: 10.1017/S0143385702000019.

[6]

J. Buzzi, O. Sester and M. Tsujii, Weakly expanding skew-product of quadratic maps, Ergodic Theory Dynam. Systems, 23 (2003), 1401-1414. doi: 10.1017/S0143385702001694.

[7]

L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.

[8]

W. Huang and W. Shen, Analytic skew products of quadratic polynomials over circle expanding maps, Nonlinearity, 26 (2013), 389-404. doi: 10.1088/0951-7715/26/2/389.

[9]

J. Milnor, Dynamics in One Complex Variable, Third Edition, Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006.

[10]

T. Nowicki, Symmetric $S$-unimodal mappings and positive Liapunov exponents, Ergodic Theory Dynam. Systems, 5 (1985), 611-616. doi: 10.1017/S0143385700003199.

[11]

D. Schnellmann, Non-continuous weakly expanding skew-products of quadratic maps with two positive Lyapunov exponents, Ergodic Theory Dynam. Systems, 28 (2008), 245-266. doi: 10.1017/S0143385707000429.

[12]

D. Schnellmann, Positive Lyapunov exponents for quadratic skew-products over a Misiurewicz-Thurston map, Nonlinearity, 22 (2009), 2681-2695. doi: 10.1088/0951-7715/22/11/006.

[13]

M. Viana, Multidimensional nonhyperbolic attractors, Inst. Hautes Études Sci. Publ. Math., 85 (1997), 63-96. doi: 10.1007/BF02699535.

[1]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[2]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[3]

Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013

[4]

Pablo G. Barrientos, Abbas Fakhari. Ergodicity of non-autonomous discrete systems with non-uniform expansion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1361-1382. doi: 10.3934/dcdsb.2019231

[5]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[6]

Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249

[7]

Fumihiko Nakamura, Yushi Nakano, Hisayoshi Toyokawa. Lyapunov exponents for random maps. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022058

[8]

Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014

[9]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[10]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[11]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[12]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[13]

Markus Bachmayr, Van Kien Nguyen. Identifiability of diffusion coefficients for source terms of non-uniform sign. Inverse Problems and Imaging, 2019, 13 (5) : 1007-1021. doi: 10.3934/ipi.2019045

[14]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[15]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[16]

Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451

[17]

M. R. S. Kulenović, Orlando Merino. A global attractivity result for maps with invariant boxes. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 97-110. doi: 10.3934/dcdsb.2006.6.97

[18]

Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885

[19]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[20]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (169)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]