-
Previous Article
A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion
- DCDS Home
- This Issue
-
Next Article
Dirichlet $(p,q)$-equations at resonance
The Fourier restriction norm method for the Zakharov-Kuznetsov equation
1. | Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut, Universitätsstraße 1, 40225 Düsseldorf, Germany |
2. | Universität Bielefeld, Fakultät für Mathematik, Postfach 10 01 31, 33501 Bielefeld, Germany |
References:
[1] |
M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for third order equations in two dimensions, Comm. Partial Differential Equations, 28 (2003), 1943-1974.
doi: 10.1081/PDE-120025491. |
[2] |
H. A. Biagioni and F. Linares, Well-Posedness Results for the Modified Zakharov-Kuznetsov Equation, In Nonlinear equations: Methods, models and applications (Bergamo, 2001), 181-189, volume 54 of Progr. Nonlinear Differential Equations Appl., pages Birkhäuser, Basel, 2003. |
[3] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[4] |
A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Equations, 31 (1995), 1002-1012. |
[5] |
A. V. Faminskiĭ, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation, Electron. J. Differential Equations, 2008, 23 pp. |
[6] |
J.-M. Ghidaglia and J.-C. Saut, Nonelliptic Schrödinger equations, J. Nonlinear Sci., 3 (1993), 169-195.
doi: 10.1007/BF02429863. |
[7] |
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[8] |
A. Grünrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations, 18 (2005), 1333-1339. |
[9] |
C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.
doi: 10.1512/iumj.1991.40.40003. |
[10] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[11] |
C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[12] |
H. Koch and N. Tzvetkov., On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbbR)$, Int. Math. Res. Not., 26 (2003), 1449-1464.
doi: 10.1155/S1073792803211260. |
[13] |
E. W. Laedke and K.-H. Spatschek, Nonlinear ion-acoustic waves in weak magnetic fields, Phys. Fluids, 25 (1982), 985-989.
doi: 10.1063/1.863853. |
[14] |
D. Lannes, F. Linares and J.-C. Saut, The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation. ArXiv e-prints, May 2012. |
[15] |
F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
doi: 10.1137/080739173. |
[16] |
F. Linares and A. Pastor., Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 260 (2011), 1060-1085.
doi: 10.1016/j.jfa.2010.11.005. |
[17] |
F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Comm. Partial Differential Equations, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[18] |
F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[19] |
M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation, Nonlinear Anal., 59 (2004), 425-438.
doi: 10.1016/j.na.2004.07.022. |
[20] |
F. Ribaud and S. Vento, Well-Posedness results for the three-dimensional Zakharov-Kuznetsov Equation, SIAM J. Math. Anal., 44 (2012), 2289-2304.
doi: 10.1137/110850566. |
[21] |
F. Ribaud and S. Vento, A Note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 499-503.
doi: 10.1016/j.crma.2012.05.007. |
[22] |
J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Differential Equations, 15 (2010), 1001-1031. |
[23] |
B. K. Shivamoggi, The Painlevé analysis of the Zakharov-Kuznetsov equation, Phys. Scripta, 42 (1990), 641-642.
doi: 10.1088/0031-8949/42/6/001. |
[24] |
V. E. Zakharov and E. A. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286. |
show all references
References:
[1] |
M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for third order equations in two dimensions, Comm. Partial Differential Equations, 28 (2003), 1943-1974.
doi: 10.1081/PDE-120025491. |
[2] |
H. A. Biagioni and F. Linares, Well-Posedness Results for the Modified Zakharov-Kuznetsov Equation, In Nonlinear equations: Methods, models and applications (Bergamo, 2001), 181-189, volume 54 of Progr. Nonlinear Differential Equations Appl., pages Birkhäuser, Basel, 2003. |
[3] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[4] |
A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Equations, 31 (1995), 1002-1012. |
[5] |
A. V. Faminskiĭ, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation, Electron. J. Differential Equations, 2008, 23 pp. |
[6] |
J.-M. Ghidaglia and J.-C. Saut, Nonelliptic Schrödinger equations, J. Nonlinear Sci., 3 (1993), 169-195.
doi: 10.1007/BF02429863. |
[7] |
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[8] |
A. Grünrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations, 18 (2005), 1333-1339. |
[9] |
C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.
doi: 10.1512/iumj.1991.40.40003. |
[10] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[11] |
C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[12] |
H. Koch and N. Tzvetkov., On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbbR)$, Int. Math. Res. Not., 26 (2003), 1449-1464.
doi: 10.1155/S1073792803211260. |
[13] |
E. W. Laedke and K.-H. Spatschek, Nonlinear ion-acoustic waves in weak magnetic fields, Phys. Fluids, 25 (1982), 985-989.
doi: 10.1063/1.863853. |
[14] |
D. Lannes, F. Linares and J.-C. Saut, The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation. ArXiv e-prints, May 2012. |
[15] |
F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
doi: 10.1137/080739173. |
[16] |
F. Linares and A. Pastor., Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 260 (2011), 1060-1085.
doi: 10.1016/j.jfa.2010.11.005. |
[17] |
F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Comm. Partial Differential Equations, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[18] |
F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[19] |
M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation, Nonlinear Anal., 59 (2004), 425-438.
doi: 10.1016/j.na.2004.07.022. |
[20] |
F. Ribaud and S. Vento, Well-Posedness results for the three-dimensional Zakharov-Kuznetsov Equation, SIAM J. Math. Anal., 44 (2012), 2289-2304.
doi: 10.1137/110850566. |
[21] |
F. Ribaud and S. Vento, A Note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 499-503.
doi: 10.1016/j.crma.2012.05.007. |
[22] |
J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Differential Equations, 15 (2010), 1001-1031. |
[23] |
B. K. Shivamoggi, The Painlevé analysis of the Zakharov-Kuznetsov equation, Phys. Scripta, 42 (1990), 641-642.
doi: 10.1088/0031-8949/42/6/001. |
[24] |
V. E. Zakharov and E. A. Kuznetsov, Three-dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286. |
[1] |
Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075 |
[2] |
Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087 |
[3] |
Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074 |
[4] |
Felipe Linares, Mahendra Panthee, Tristan Robert, Nikolay Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3521-3533. doi: 10.3934/dcds.2019145 |
[5] |
Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019 |
[6] |
Mo Chen, Lionel Rosier. Exact controllability of the linear Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3889-3916. doi: 10.3934/dcdsb.2020080 |
[7] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[8] |
Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047 |
[9] |
Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005 |
[10] |
Felipe Linares, Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 547-565. doi: 10.3934/dcds.2009.24.547 |
[11] |
Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763 |
[12] |
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 |
[13] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[14] |
Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261 |
[15] |
Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903 |
[16] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
[17] |
Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259 |
[18] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
[19] |
Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088 |
[20] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]