\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solutions with clustered bubbles and a boundary layer of an elliptic problem

Abstract Related Papers Cited by
  • We study positive solutions of the equation $ε^2 \Delta u - u + u^\frac{n+2}{n-2} = 0$ where $ε >0$ is small, with Neumann boundary condition in a unit ball $B\subset\mathbb R^3$. We prove the existence of solutions with multiple interior bubbles near the center and a boundary layer. The method may also be used to the case $n=4$, $5$ and get the analogous results.
    Mathematics Subject Classification: 35J25, 35J61.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, Nonlinear Anal. Scuola Norm. Sup. Pisa, 4 (1991), 9-25.

    [2]

    Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350.doi: 10.1006/jfan.1993.1053.

    [3]

    W. W. Ao, J. C. Wei and J. Zeng, An optimal bound on the number of interior spike solutions of the Lin-Ni-Takagi problem, J. Funct. Anal., 265 (2013), 1324-1356.doi: 10.1016/j.jfa.2013.06.016.

    [4]

    L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.doi: 10.1002/cpa.3160420304.

    [5]

    D. M. Cao, E. Noussair and S. S. Yan, Existence and nonexistence of interior-peaked solution for a nonlinear Neumann problem, Pacific J. Math., 200 (2001), 19-41.doi: 10.2140/pjm.2001.200.19.

    [6]

    M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincar Anal. Non Linéaire, 22 (2005), 45-82.doi: 10.1016/j.anihpc.2004.05.001.

    [7]

    P. Esposito, Estimations à l'intérieur pour un problème elliptique semi-linéaire avec non-linéarité critique, [Interior estimates for some semilinear elliptic problem with critical nonlinearity], Ann. Inst. H. Poincar Anal. Non Linéaire, 24 (2007), 629-644.doi: 10.1016/j.anihpc.2006.04.004.

    [8]

    N. Ghoussoub and C. F. Gui, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474.doi: 10.1007/PL00004663.

    [9]

    N. Ghoussoub, C. F. Gui and M. J. Zhu, On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations, 26 (2001), 1929-1946.doi: 10.1081/PDE-100107812.

    [10]

    C. F. Gui and J. C. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.doi: 10.4153/CJM-2000-024-x.

    [11]

    F.-H. Lin, W.-M. Ni and J. C. Wei, On the number of interior peak solutions for some singularly perturbed Neumann problems, Comm. Pure Appl. Math., 60 (2007), 252-281.doi: 10.1002/cpa.20139.

    [12]

    A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.doi: 10.1215/S0012-7094-04-12414-5.

    [13]

    W.-M. Ni, Qualitative properties of solutions to elliptic problems, in Stationary partial differential equations, North-Holland, Amsterdam, I (2004), 157-233.doi: 10.1016/S1874-5733(04)80005-6.

    [14]

    W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.doi: 10.1215/S0012-7094-93-07004-4.

    [15]

    O. Rey, The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.doi: 10.1016/0022-1236(90)90002-3.

    [16]

    O. Rey, An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math., 1 (1999), 405-449.doi: 10.1142/S0219199799000158.

    [17]

    O. Rey, The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl., 81 (2002), 655-696.doi: 10.1016/S0021-7824(01)01251-X.

    [18]

    L. P. Wang and J. C. Wei, Solutions with interior bubble and boundary layer for an elliptic problem, Discrete Contin. Dyn. Syst., 21 (2008), 333-351.doi: 10.3934/dcds.2008.21.333.

    [19]

    J. C. Wei, Existence and stability of spikes for the Gierer-Meinhardt system, in Handbook of Differential Equations: Ationary Partial Differential Equations, Elservier/North-Holland, Amsterdam, V (2008), 487-585.doi: 10.1016/S1874-5733(08)80013-7.

    [20]

    Z. Q. Wang, High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1003-1029.doi: 10.1017/S0308210500022617.

    [21]

    J. C. Wei and S. S. Yan, Solutions with interior bubble and boundary layer for an elliptic Neumann problem with critical nonlinearity, C. R. Acad. Sci. Paris, 343 (2006), 311-316.doi: 10.1016/j.crma.2006.07.010.

    [22]

    J. C. Wei and S. S. Yan, Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth, J. Math. Pures Appl. (9), 88 (2007), 350-378.doi: 10.1016/j.matpur.2007.07.001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return