\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform Hölder regularity with small exponent in competition-fractional diffusion systems

Abstract Related Papers Cited by
  • For a class of competition-diffusion nonlinear systems involving the $s$-power of the laplacian, $s\in(0,1)$, of the form \[ (-\Delta)^{s} u_i=f_i(u_i) - \beta u_i\sum_{j\neq i}a_{ij}u_j^2,\qquad i=1,\dots,k, \] we prove that $L^\infty$ boundedness implies $\mathcal{C}^{0,\alpha}$ boundedness for $\alpha>0$ sufficiently small, uniformly as $\beta\to +\infty$. This extends to the case $s\neq1/2$ part of the results obtained by the authors in the previous paper [arXiv: 1211.6087v1].
    Mathematics Subject Classification: Primary: 35J65; Secondary: 35B40, 35B44, 35R11, 81Q05, 82B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. A. Caffarelli, A. L. Karakhanyan and F.-H. Lin, The geometry of solutions to a segregation problem for nondivergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.doi: 10.1007/s11784-009-0110-0.

    [2]

    L. A. Caffarelli and F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.doi: 10.1090/S0894-0347-08-00593-6.

    [3]

    L. A. Caffarelli and J.-M. Roquejoffre, Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal., 183 (2007), 457-487.doi: 10.1007/s00205-006-0013-9.

    [4]

    L. A. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151-1179.doi: 10.4171/JEMS/226.

    [5]

    L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.doi: 10.1007/s00222-007-0086-6.

    [6]

    L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [7]

    M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues, J. Funct. Anal., 198 (2003), 160-196.doi: 10.1016/S0022-1236(02)00105-2.

    [8]

    M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.doi: 10.1016/j.aim.2004.08.006.

    [9]

    E. N. Dancer, K. Wang and Z. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. Differential Equations, 251 (2011), 2737-2769.doi: 10.1016/j.jde.2011.06.015.

    [10]

    ________, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.doi: 10.1090/S0002-9947-2011-05488-7.

    [11]

    _______, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.doi: 10.1016/j.jfa.2011.10.013.

    [12]

    E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.doi: 10.1080/03605308208820218.

    [13]

    N. S. Landkof, Foundations of modern potential theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.

    [14]

    B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302.doi: 10.1002/cpa.20309.

    [15]

    B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, 219, Longman Scientific & Technical, Harlow, 1990.

    [16]

    X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional laplacian: regularity up to the boundary, J. Math. Pures Appl., in press. doi: 10.1016/j.matpur.2013.06.003.

    [17]

    L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.doi: 10.1002/cpa.20153.

    [18]

    H. Tavares and S. Terracini, Regularity of the nodal set of segregated critical configurations under a weak reflection law, Calc. Var. Partial Differential Equations, 45 (2012), 273-317.doi: 10.1007/s00526-011-0458-z.

    [19]

    S. Terracini, G. Verzini and A. Zilio, Uniform Hölder bounds for strongly competing systems involving the square root of the Laplacian, preprint, arXiv:1211.6087.

    [20]

    K. Wang and Z. Zhang, Some new results in competing systems with many species, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 739-761.doi: 10.1016/j.anihpc.2009.11.004.

    [21]

    J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition, Nonlinearity, 21 (2008), 305-317.doi: 10.1088/0951-7715/21/2/006.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(108) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return