July  2014, 34(7): 2693-2701. doi: 10.3934/dcds.2014.34.2693

A note on the Chern-Simons-Dirac equations in the Coulomb gauge

1. 

Department of Mathematics, University of Edinburgh, Edinburgh EH9 3JE, United Kingdom

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

3. 

Department of Mathematics, Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan

Received  June 2013 Revised  October 2013 Published  December 2013

We prove that the Chern-Simons-Dirac equations in the Coulomb gauge are locally well-posed from initial data in $H^s$ with $s>\frac{1}{4}$. To study nonlinear Wave or Dirac equations at this regularity generally requires the presence of null structure. The novel point here is that we make no use of the null structure of the system. Instead we exploit the additional elliptic structure in the Coulomb gauge together with the bilinear Strichartz estimates of Klainerman-Tataru.
Citation: Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693
References:
[1]

N. Bournaveas, Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge, Electron. J. Differential Equations, 2009, 10 pp.

[2]

N. Bournaveas, T. Candy and S. Machihara, Local and global well-posedness for the Chern-Simons-Dirac system in one dimension, Differential Integral Equations, 25 (2012), 699-718.

[3]

S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. of Math. (2), 99 (1974), 48-69. doi: 10.2307/1971013.

[4]

Y. M. Cho, J. W. Kim and D. H. Park, Fermionic vortex solutions in Chern-Simons electrodynamics, Phys. Rev. D (3), 45 (1992), 3802-3806. doi: 10.1103/PhysRevD.45.3802.

[5]

S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Physical Review Letters, 48 (1982), 975-978. doi: 10.1103/PhysRevLett.48.975.

[6]

H. Huh, Cauchy problem for the fermion field equation coupled with the Chern-Simons gauge, Lett. Math. Phys., 79 (2007), 75-94. doi: 10.1007/s11005-006-0118-y.

[7]

_______, Local and global solutions of the Chern-Simons-Higgs system, J. Funct. Anal., 242 (2007), 526-549. doi: 10.1016/j.jfa.2006.09.009.

[8]

_______, Global solutions and asymptotic behaviors of the Chern-Simons-Dirac equations in $\mathbbR^{1+1}$, J. Math. Anal. Appl., 366 (2010), 706-713. doi: 10.1016/j.jmaa.2009.12.055.

[9]

_______, Towards the Chern-Simons-Higgs equation with finite energy, Discrete Contin. Dyn. Syst., 30 (2011), 1145-1159. doi: 10.3934/dcds.2011.30.1145.

[10]

H. Huh and S.-J. Oh, Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, preprint, arXiv:1209.3841, (2012).

[11]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295. doi: 10.1142/S0219199702000634.

[12]

S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $R^{4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116. doi: 10.1090/S0894-0347-99-00282-9.

[13]

H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math., 118 (1996), 1-16. doi: 10.1353/ajm.1996.0002.

[14]

B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, preprint, arXiv:1212.1476, (2012). doi: 10.1093/imrn/rnt161.

[15]

A. Lopez and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories, Phys. Rev. B, 44 (1991), 5246-5262. doi: 10.1103/PhysRevB.44.5246.

[16]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Contin. Dyn. Syst., 33 (2013), 2531-2546. doi: 10.3934/dcds.2013.33.2531.

show all references

References:
[1]

N. Bournaveas, Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge, Electron. J. Differential Equations, 2009, 10 pp.

[2]

N. Bournaveas, T. Candy and S. Machihara, Local and global well-posedness for the Chern-Simons-Dirac system in one dimension, Differential Integral Equations, 25 (2012), 699-718.

[3]

S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. of Math. (2), 99 (1974), 48-69. doi: 10.2307/1971013.

[4]

Y. M. Cho, J. W. Kim and D. H. Park, Fermionic vortex solutions in Chern-Simons electrodynamics, Phys. Rev. D (3), 45 (1992), 3802-3806. doi: 10.1103/PhysRevD.45.3802.

[5]

S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Physical Review Letters, 48 (1982), 975-978. doi: 10.1103/PhysRevLett.48.975.

[6]

H. Huh, Cauchy problem for the fermion field equation coupled with the Chern-Simons gauge, Lett. Math. Phys., 79 (2007), 75-94. doi: 10.1007/s11005-006-0118-y.

[7]

_______, Local and global solutions of the Chern-Simons-Higgs system, J. Funct. Anal., 242 (2007), 526-549. doi: 10.1016/j.jfa.2006.09.009.

[8]

_______, Global solutions and asymptotic behaviors of the Chern-Simons-Dirac equations in $\mathbbR^{1+1}$, J. Math. Anal. Appl., 366 (2010), 706-713. doi: 10.1016/j.jmaa.2009.12.055.

[9]

_______, Towards the Chern-Simons-Higgs equation with finite energy, Discrete Contin. Dyn. Syst., 30 (2011), 1145-1159. doi: 10.3934/dcds.2011.30.1145.

[10]

H. Huh and S.-J. Oh, Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, preprint, arXiv:1209.3841, (2012).

[11]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295. doi: 10.1142/S0219199702000634.

[12]

S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $R^{4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116. doi: 10.1090/S0894-0347-99-00282-9.

[13]

H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math., 118 (1996), 1-16. doi: 10.1353/ajm.1996.0002.

[14]

B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, preprint, arXiv:1212.1476, (2012). doi: 10.1093/imrn/rnt161.

[15]

A. Lopez and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories, Phys. Rev. B, 44 (1991), 5246-5262. doi: 10.1103/PhysRevB.44.5246.

[16]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Contin. Dyn. Syst., 33 (2013), 2531-2546. doi: 10.3934/dcds.2013.33.2531.

[1]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[2]

Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199

[3]

Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008

[4]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[5]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[6]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[7]

Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193

[8]

Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2541-2561. doi: 10.3934/dcds.2021202

[9]

Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations and Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002

[10]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[11]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

[12]

Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126

[13]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[14]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[15]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[16]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

[17]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[18]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[19]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[20]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (3)

[Back to Top]