-
Previous Article
Pointwise hyperbolicity implies uniform hyperbolicity
- DCDS Home
- This Issue
-
Next Article
On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties
Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations
1. | Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, 100088 |
2. | School of Science, Nanjing University of Science & Technology, Nanjing, 210094, China |
3. | Department of Mathematics, Nanjing University, Nanjing, 210093, China |
References:
[1] |
J. B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Schrödinger-Klein-Gordon equations, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro), North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978, 37-44. |
[2] |
W. Bao, X. Dong and S. Wang, Singular limits of Klein-Gordon-Schrödinger equations to Schrödinger-Yukawa equations, Mult. Model. Simul., 8 (2010), 1742-1769.
doi: 10.1137/100790586. |
[3] |
P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.
doi: 10.1137/0521065. |
[4] |
A. Budhiraja, P. Dupuis and V. Maroulas, Large deviations for infinite dimensional stochastic dynamical systems, Ann. Probab., 36 (2008), 1390-1420.
doi: 10.1214/07-AOP362. |
[5] |
P. L. Chow, Large deviation problem for some parabolic Itô equations, Comm. Pure Appl. Math., 45 (1992), 97-120.
doi: 10.1002/cpa.3160450105. |
[6] |
J. Duan and A. Millet, Large deviations for the Boussinesq equations under random influences, Stoch. Proc. and Appl., 119 (2009), 2052-2081.
doi: 10.1016/j.spa.2008.10.004. |
[7] |
P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley Series in Probability and Statistics: Probability and Statistics, A Wiley-Interscience Publication, J. Wiley & Sons, Inc., New York,1997.
doi: 10.1002/9781118165904. |
[8] |
W. E, X. Li and E. Vanden-Eijnden, Some recent progress in multiscale modeling, in Multiscale Modelling and Simulation, Lect. Notes Comput. Sci. Eng., 39, Springer, Berlin, 2004, 3-21.
doi: 10.1007/978-3-642-18756-8_1. |
[9] |
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260, Springer-Verlag, New York. 1998.
doi: 10.1007/978-1-4612-0611-8. |
[10] |
I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations. II, J. Math. Anal. Appl., 66 (1978), 358-378.
doi: 10.1016/0022-247X(78)90239-1. |
[11] |
B. Guo and C. Miao, Asymptotic behavior of coupled Klein-Gordon-Schrödinger equations, Sci. China Ser. A, 25 (1995), 705-714. |
[12] |
B. Guo and Y. Li, Attractors for Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Diff. Equa., 136 (1997), 356-377.
doi: 10.1006/jdeq.1996.3242. |
[13] |
N. Hayashi and W. von Wahl, On the global strong solution of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497.
doi: 10.2969/jmsj/03930489. |
[14] |
P. Imkeller and A. Monahan, eds., Stochastic climate dynamics, a special issue in the journal Stoch. and Dyna., 2 (2002). |
[15] |
G. Kallianpur and J. Xiong, Large deviations for a class of stochastic partial differential equations, Ann. Probab., 24 (1996), 320-345.
doi: 10.1214/aop/1042644719. |
[16] |
S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.
doi: 10.1002/cpa.3160380305. |
[17] |
Y. Li and B. Guo, Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265.
doi: 10.1016/S0022-247X(03)00152-5. |
[18] |
K. N. Lu and B. X. Wang, Attractor for dissipative Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Diff. Equa., 170 (2001), 281-316. |
[19] |
Y. Lv, B. Guo and X. Yang, Dynamics of stochastic Klein-Gordon-Schrödinger equations in unbounded domains, Diff. and Inte. Equa., 24 (2011), 231-260. |
[20] |
Y. Lv and A. J. Roberts, Large deviation principle for singularly perturbed stochastic damped wave equations, to appear in Stoch. Anal. Appl., 2013. |
[21] |
M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 426 (2004), 63 pp.
doi: 10.4064/dm426-0-1. |
[22] |
T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann., 313 (1999), 127-140.
doi: 10.1007/s002080050254. |
[23] |
S. Peszat, Large deviation estimates for stochastic evolution equations, Probab. Theory Related Fields, 98 (1994), 113-136.
doi: 10.1007/BF01311351. |
[24] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223. |
[25] |
S. H. Schochet and M. I. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Phys., 106 (1986), 569-580.
doi: 10.1007/BF01463396. |
[26] |
R. B. Sowers, Large deviations for a reaction-diffusion equation with non-Gaussian perturbation, Ann. Probab., 20 (1992), 504-537.
doi: 10.1214/aop/1176989939. |
[27] |
S. S. Sritharan and P. Sundar, Large deviations for two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Process. Appl., 116 (2006), 1636-1659.
doi: 10.1016/j.spa.2006.04.001. |
[28] |
T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. |
[29] |
B. Wang and H. Lange, Attractors for Klein-Gordon-Schrödinger equation, J. Math. Phys., 40 (1999), 2445-2457.
doi: 10.1063/1.532875. |
[30] |
W. Wang, J. Duan and A. J. Roberts, Large deviations for slow-fast stochastic reaction-diffusion equations, J. Diff. Equa., 253 (2012), 3501-3522.
doi: 10.1016/j.jde.2012.08.041. |
[31] |
W. Wang and J. Duan, Reductions and deviations for stochastic partial differential equations under fast dynamical boundary conditions, Stoch. Anal. Appl., 27 (2009), 431-459.
doi: 10.1080/07362990802679166. |
show all references
References:
[1] |
J. B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Schrödinger-Klein-Gordon equations, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro), North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978, 37-44. |
[2] |
W. Bao, X. Dong and S. Wang, Singular limits of Klein-Gordon-Schrödinger equations to Schrödinger-Yukawa equations, Mult. Model. Simul., 8 (2010), 1742-1769.
doi: 10.1137/100790586. |
[3] |
P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.
doi: 10.1137/0521065. |
[4] |
A. Budhiraja, P. Dupuis and V. Maroulas, Large deviations for infinite dimensional stochastic dynamical systems, Ann. Probab., 36 (2008), 1390-1420.
doi: 10.1214/07-AOP362. |
[5] |
P. L. Chow, Large deviation problem for some parabolic Itô equations, Comm. Pure Appl. Math., 45 (1992), 97-120.
doi: 10.1002/cpa.3160450105. |
[6] |
J. Duan and A. Millet, Large deviations for the Boussinesq equations under random influences, Stoch. Proc. and Appl., 119 (2009), 2052-2081.
doi: 10.1016/j.spa.2008.10.004. |
[7] |
P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley Series in Probability and Statistics: Probability and Statistics, A Wiley-Interscience Publication, J. Wiley & Sons, Inc., New York,1997.
doi: 10.1002/9781118165904. |
[8] |
W. E, X. Li and E. Vanden-Eijnden, Some recent progress in multiscale modeling, in Multiscale Modelling and Simulation, Lect. Notes Comput. Sci. Eng., 39, Springer, Berlin, 2004, 3-21.
doi: 10.1007/978-3-642-18756-8_1. |
[9] |
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260, Springer-Verlag, New York. 1998.
doi: 10.1007/978-1-4612-0611-8. |
[10] |
I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations. II, J. Math. Anal. Appl., 66 (1978), 358-378.
doi: 10.1016/0022-247X(78)90239-1. |
[11] |
B. Guo and C. Miao, Asymptotic behavior of coupled Klein-Gordon-Schrödinger equations, Sci. China Ser. A, 25 (1995), 705-714. |
[12] |
B. Guo and Y. Li, Attractors for Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Diff. Equa., 136 (1997), 356-377.
doi: 10.1006/jdeq.1996.3242. |
[13] |
N. Hayashi and W. von Wahl, On the global strong solution of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497.
doi: 10.2969/jmsj/03930489. |
[14] |
P. Imkeller and A. Monahan, eds., Stochastic climate dynamics, a special issue in the journal Stoch. and Dyna., 2 (2002). |
[15] |
G. Kallianpur and J. Xiong, Large deviations for a class of stochastic partial differential equations, Ann. Probab., 24 (1996), 320-345.
doi: 10.1214/aop/1042644719. |
[16] |
S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.
doi: 10.1002/cpa.3160380305. |
[17] |
Y. Li and B. Guo, Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265.
doi: 10.1016/S0022-247X(03)00152-5. |
[18] |
K. N. Lu and B. X. Wang, Attractor for dissipative Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Diff. Equa., 170 (2001), 281-316. |
[19] |
Y. Lv, B. Guo and X. Yang, Dynamics of stochastic Klein-Gordon-Schrödinger equations in unbounded domains, Diff. and Inte. Equa., 24 (2011), 231-260. |
[20] |
Y. Lv and A. J. Roberts, Large deviation principle for singularly perturbed stochastic damped wave equations, to appear in Stoch. Anal. Appl., 2013. |
[21] |
M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 426 (2004), 63 pp.
doi: 10.4064/dm426-0-1. |
[22] |
T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann., 313 (1999), 127-140.
doi: 10.1007/s002080050254. |
[23] |
S. Peszat, Large deviation estimates for stochastic evolution equations, Probab. Theory Related Fields, 98 (1994), 113-136.
doi: 10.1007/BF01311351. |
[24] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223. |
[25] |
S. H. Schochet and M. I. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Phys., 106 (1986), 569-580.
doi: 10.1007/BF01463396. |
[26] |
R. B. Sowers, Large deviations for a reaction-diffusion equation with non-Gaussian perturbation, Ann. Probab., 20 (1992), 504-537.
doi: 10.1214/aop/1176989939. |
[27] |
S. S. Sritharan and P. Sundar, Large deviations for two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Process. Appl., 116 (2006), 1636-1659.
doi: 10.1016/j.spa.2006.04.001. |
[28] |
T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. |
[29] |
B. Wang and H. Lange, Attractors for Klein-Gordon-Schrödinger equation, J. Math. Phys., 40 (1999), 2445-2457.
doi: 10.1063/1.532875. |
[30] |
W. Wang, J. Duan and A. J. Roberts, Large deviations for slow-fast stochastic reaction-diffusion equations, J. Diff. Equa., 253 (2012), 3501-3522.
doi: 10.1016/j.jde.2012.08.041. |
[31] |
W. Wang and J. Duan, Reductions and deviations for stochastic partial differential equations under fast dynamical boundary conditions, Stoch. Anal. Appl., 27 (2009), 431-459.
doi: 10.1080/07362990802679166. |
[1] |
P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029 |
[2] |
Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122 |
[3] |
Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077 |
[4] |
A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097 |
[5] |
Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041 |
[6] |
Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067 |
[7] |
Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022065 |
[8] |
Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221 |
[9] |
Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55 |
[10] |
Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233 |
[11] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149 |
[12] |
Peng Gao, Yong Li. Averaging principle for the Schrödinger equations†. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089 |
[13] |
Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221 |
[14] |
Xiaomin Huang, Yanpei Jiang, Wei Liu. Freidlin-Wentzell's large deviation principle for stochastic integral evolution equations. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022091 |
[15] |
Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure and Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413 |
[16] |
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 |
[17] |
Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081 |
[18] |
Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 |
[19] |
Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525 |
[20] |
Ahmed Y. Abdallah, Taqwa M. Al-Khader, Heba N. Abu-Shaab. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022006 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]