\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pointwise hyperbolicity implies uniform hyperbolicity

Abstract Related Papers Cited by
  • We provide a general mechanism for obtaining uniform information from pointwise data. For instance, a diffeomorphism of a compact Riemannian manifold with pointwise expanding and contracting continuous invariant cone families is an Anosov diffeomorphism, i.e., the entire manifold is uniformly hyperbolic.
    Mathematics Subject Classification: Primary: 37D20, 37D25; Secondary: 54H05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. F. Alves, V. Araújo and B. Saussol, On the uniform hyperbolicity of some nonuniformly hyperbolic systems, Proc. Amer. Math. Soc., 131 (2003), 1303-1309.doi: 10.1090/S0002-9939-02-06857-0.

    [2]

    L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.

    [3]

    Y. Cao, Non-zero Lyapunov exponents and uniform hyperbolicity, Nonlinearity, 16 (2003), 1473-1479.doi: 10.1088/0951-7715/16/4/316.

    [4]

    Y. Cao, S. Luzzatto and I. Rios, A minimum principle for Lyapunov exponents and a higher-dimensional version of a theorem of Mañé, Qual. Theory Dyn. Syst., 5 (2004), 261-273.doi: 10.1007/BF02972681.

    [5]

    Y. Cao, S. Luzzatto and I. Rios, Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies, Discrete Contin. Dyn. Syst., 15 (2006), 61-71.doi: 10.3934/dcds.2006.15.61.

    [6]

    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.

    [7]

    R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., 229 (1977), 351-370.

    [8]

    R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations, 15 (1974), 429-458.doi: 10.1016/0022-0396(74)90067-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return