-
Previous Article
Curves of equiharmonic solutions, and problems at resonance
- DCDS Home
- This Issue
-
Next Article
Pointwise hyperbolicity implies uniform hyperbolicity
Quantization coefficients for ergodic measures on infinite symbolic space
1. | Department of Mathematics,The University of Texas-Pan American, 1201 West University Drive, Edinburg, TX 78539-2999, United States |
References:
[1] |
K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997. |
[2] |
K. J. Falconer, The multifractal spectrum of statistically self-similar measures, Journal of Theoretical Probability, 7 (1994), 681-701.
doi: 10.1007/BF02213576. |
[3] |
A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.
doi: 10.1007/978-1-4615-3626-0. |
[4] |
S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics 1730, Springer, Berlin, 2000.
doi: 10.1007/BFb0103945. |
[5] |
S. Graf and H. Luschgy, The Quantization dimension of self-similar probabilities, Math. Nachr., 241 (2002), 103-109. |
[6] |
R. Gray and D. Neuhoff, Quantization, IEEE Trans. Inform. Theory, 44 (1998), 2325-2383.
doi: 10.1109/18.720541. |
[7] |
J. Hutchinson, Fractals and self-similarity, Indiana Univ. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[8] |
P. Hanus, R. D. Mauldin and M. Urbański, Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems, Acta Math. Hung., 96 (2002), 27-98.
doi: 10.1023/A:1015613628175. |
[9] |
L. J. Lindsay and R. D. Mauldin, Quantization dimension for conformal iterated function systems, Institute of Physics Publishing, Nonlinearity, 15 (2002), 189-199.
doi: 10.1088/0951-7715/15/1/309. |
[10] |
R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.
doi: 10.1112/plms/s3-73.1.105. |
[11] |
R. D. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, 148. Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543050. |
[12] |
N. Patzschke, Self-conformal multifractal measures, Adv. Appli. Math, 19 (1997), 486-513.
doi: 10.1006/aama.1997.0557. |
[13] |
M. K. Roychowdhury, Lower quantization coefficient and the $F$-conformal measure, Colloquium Mathematicum, 122 (2011), 255-263.
doi: 10.4064/cm122-2-11. |
[14] |
M. K. Roychowdhury, Quantization dimension function and ergodic measure with bounded distortion, Bulletin of the Polish Academy of Sciences Mathematics, 57 (2009), 251-262.
doi: 10.4064/ba57-3-7. |
[15] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[16] |
K. Yoshida, Functional Analysis, Berlin-Heidelberg-New York: Springer, 1966. |
[17] |
S. Zhu, The lower quantization coefficient of the $F$-conformal measure is positive, Nonlinear Analysis, 69 (2008), 448-455.
doi: 10.1016/j.na.2007.05.031. |
show all references
References:
[1] |
K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997. |
[2] |
K. J. Falconer, The multifractal spectrum of statistically self-similar measures, Journal of Theoretical Probability, 7 (1994), 681-701.
doi: 10.1007/BF02213576. |
[3] |
A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.
doi: 10.1007/978-1-4615-3626-0. |
[4] |
S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics 1730, Springer, Berlin, 2000.
doi: 10.1007/BFb0103945. |
[5] |
S. Graf and H. Luschgy, The Quantization dimension of self-similar probabilities, Math. Nachr., 241 (2002), 103-109. |
[6] |
R. Gray and D. Neuhoff, Quantization, IEEE Trans. Inform. Theory, 44 (1998), 2325-2383.
doi: 10.1109/18.720541. |
[7] |
J. Hutchinson, Fractals and self-similarity, Indiana Univ. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[8] |
P. Hanus, R. D. Mauldin and M. Urbański, Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems, Acta Math. Hung., 96 (2002), 27-98.
doi: 10.1023/A:1015613628175. |
[9] |
L. J. Lindsay and R. D. Mauldin, Quantization dimension for conformal iterated function systems, Institute of Physics Publishing, Nonlinearity, 15 (2002), 189-199.
doi: 10.1088/0951-7715/15/1/309. |
[10] |
R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.
doi: 10.1112/plms/s3-73.1.105. |
[11] |
R. D. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, 148. Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543050. |
[12] |
N. Patzschke, Self-conformal multifractal measures, Adv. Appli. Math, 19 (1997), 486-513.
doi: 10.1006/aama.1997.0557. |
[13] |
M. K. Roychowdhury, Lower quantization coefficient and the $F$-conformal measure, Colloquium Mathematicum, 122 (2011), 255-263.
doi: 10.4064/cm122-2-11. |
[14] |
M. K. Roychowdhury, Quantization dimension function and ergodic measure with bounded distortion, Bulletin of the Polish Academy of Sciences Mathematics, 57 (2009), 251-262.
doi: 10.4064/ba57-3-7. |
[15] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[16] |
K. Yoshida, Functional Analysis, Berlin-Heidelberg-New York: Springer, 1966. |
[17] |
S. Zhu, The lower quantization coefficient of the $F$-conformal measure is positive, Nonlinear Analysis, 69 (2008), 448-455.
doi: 10.1016/j.na.2007.05.031. |
[1] |
Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for non-ergodic measures. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2767-2789. doi: 10.3934/dcds.2020149 |
[2] |
Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991 |
[3] |
Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120. |
[4] |
Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457 |
[5] |
Richard Cushman, Jędrzej Śniatycki. Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum. Journal of Geometric Mechanics, 2018, 10 (4) : 419-443. doi: 10.3934/jgm.2018016 |
[6] |
Fabiano Boaventura de Miranda, Cristiano Torezzan. A shape-gain approach for vector quantization based on flat tori. Advances in Mathematics of Communications, 2020, 14 (3) : 467-476. doi: 10.3934/amc.2020064 |
[7] |
Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167 |
[8] |
Alberto S. Cattaneo, Pavel Mnev, Konstantin Wernli. Constrained systems, generalized Hamilton-Jacobi actions, and quantization. Journal of Geometric Mechanics, 2022, 14 (2) : 179-272. doi: 10.3934/jgm.2022010 |
[9] |
Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235 |
[10] |
Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4593-4608. doi: 10.3934/dcds.2021050 |
[11] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[12] |
Mrinal Kanti Roychowdhury. Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4555-4570. doi: 10.3934/dcds.2018199 |
[13] |
Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4929-4943. doi: 10.3934/dcds.2019201 |
[14] |
Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019 |
[15] |
Luis Barreira, Christian Wolf. Dimension and ergodic decompositions for hyperbolic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 201-212. doi: 10.3934/dcds.2007.17.201 |
[16] |
Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018 |
[17] |
Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118 |
[18] |
M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure and Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805 |
[19] |
De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699 |
[20] |
Rafael Alcaraz Barrera. Topological and ergodic properties of symmetric sub-shifts. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4459-4486. doi: 10.3934/dcds.2014.34.4459 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]