\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions

Abstract Related Papers Cited by
  • In this paper, we revisit the 2D rotation-strain model which was derived in [14] for the motion of incompressible viscoelastic materials and prove its global well-posedness theory without making use of the equation of the rotation angle. The proof relies on a new identity satisfied by the strain matrix. The smallness assumptions are only imposed on the $H^2$ norm of initial velocity field and the initial strain matrix, which implies that the deformation tensor is allowed being away from the equilibrium of 2 in the maximum norm.
    Mathematics Subject Classification: Primary: 76D03, 76D09; Secondary: 35M10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Agemi, Global existence of nonlinear elastic waves, Invent. Math., 142 (2000), 225-250.doi: 10.1007/s002220000084.

    [2]

    J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112.doi: 10.1137/S0036141099359317.

    [3]

    Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31 (2006), 1793-1810.doi: 10.1080/03605300600858960.

    [4]

    Y. Du, C. Liu and Q. Zhang, A blow-up criterion for 3-D compressible viscoelasticity, arXiv:1202.3693.

    [5]

    J. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system, Houston J. Math., 37 (2011), 627-636.

    [6]

    K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality, Ann. Math. (2), 48 (1947), 441-471.doi: 10.2307/1969180.

    [7]

    M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.

    [8]

    L. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains, SIAM J. Math. Anal., 42 (2010), 2610-2625.doi: 10.1137/10078503X.

    [9]

    X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198.doi: 10.1016/j.jde.2010.03.027.

    [10]

    X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231.doi: 10.1016/j.jde.2010.10.017.

    [11]

    F. John, Rotation and strain, Comm. Pure Appl. Math., 14 (1961), 391-413.doi: 10.1002/cpa.3160140316.

    [12]

    F. John, Distance changes in deformations with small strain, in 1970 Studies and Essays (Presented to Yu-why Chen on his 60th Birthday, April 1, 1970), Math. Res. Center, Nat. Taiwan Univ., Taipei, 1970, 1-15.

    [13]

    P. Kessenich, Global Existence with Small Initial Data for Three-Dimensional Incompressible Isotropic Viscoelastic Materials, Ph.D Thesis, University of California, Santa Barbara, 2008.

    [14]

    Z. Lei, On 2D viscoelasticity with small strain, Archive Ration. Mech. Anal., 198 (2010), 13-37.doi: 10.1007/s00205-010-0346-2.

    [15]

    Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chin. Ann. Math. Ser. B, 27 (2006), 565-580.doi: 10.1007/s11401-005-0041-z.

    [16]

    Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Comm. Math. Sci., 5 (2007), 595-616.doi: 10.4310/CMS.2007.v5.n3.a5.

    [17]

    Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398.doi: 10.1007/s00205-007-0089-x.

    [18]

    Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids, J. Differential Equations, 250 (2011), 3813-3830.doi: 10.1016/j.jde.2011.01.005.

    [19]

    Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.doi: 10.1137/040618813.

    [20]

    F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.doi: 10.1002/cpa.20074.

    [21]

    F.-H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558.doi: 10.1002/cpa.20219.

    [22]

    P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.

    [23]

    C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Rat. Mech Anal., 159 (2001), 229-252.doi: 10.1007/s002050100158.

    [24]

    N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows, J. Math. Pures Appl. (9), 96 (2011), 502-520.doi: 10.1016/j.matpur.2011.04.008.

    [25]

    N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows, Invent. Math., 191 (2013), 427-500.doi: 10.1007/s00222-012-0399-y.

    [26]

    J. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Anal., 72 (2010), 3222-3234.doi: 10.1016/j.na.2009.12.022.

    [27]

    J. Qian, Initial boundary value problems for the compressible viscoelastic fluid, J. Differential Equations, 250 (2011), 848-865.doi: 10.1016/j.jde.2010.07.026.

    [28]

    J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835-868.doi: 10.1007/s00205-010-0351-5.

    [29]

    T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2), 151 (2000), 849-874.doi: 10.2307/121050.

    [30]

    T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750-788.doi: 10.1002/cpa.20049.

    [31]

    T. C. Sideris and B. Thomases, Local energy decay for solutions of multi-dimensional isotropic symmetric hyperbolic systems, J. Hyperbolic Differ. Equ., 3 (2006), 673-690.doi: 10.1142/S0219891606000975.

    [32]

    T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics, Comm. Pure Appl. Math., 60 (2007), 1707-1730.doi: 10.1002/cpa.20196.

    [33]

    Y. Sun and Z. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain, Comm. Math. Phys., 303 (2011), 361-383.doi: 10.1007/s00220-010-1170-0.

    [34]

    T. Zhang and D. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework, arXiv:1101.5864.

    [35]

    T. Zhang and D. Fang, Global existence in critical spaces for incompressible viscoelastic fluids, arXiv:1101.5862.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return