July  2014, 34(7): 2861-2871. doi: 10.3934/dcds.2014.34.2861

Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions

1. 

School of Mathematical Sciences, LMNS and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China

Received  April 2013 Revised  August 2013 Published  December 2013

In this paper, we revisit the 2D rotation-strain model which was derived in [14] for the motion of incompressible viscoelastic materials and prove its global well-posedness theory without making use of the equation of the rotation angle. The proof relies on a new identity satisfied by the strain matrix. The smallness assumptions are only imposed on the $H^2$ norm of initial velocity field and the initial strain matrix, which implies that the deformation tensor is allowed being away from the equilibrium of 2 in the maximum norm.
Citation: Zhen Lei. Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2861-2871. doi: 10.3934/dcds.2014.34.2861
References:
[1]

R. Agemi, Global existence of nonlinear elastic waves, Invent. Math., 142 (2000), 225-250. doi: 10.1007/s002220000084.

[2]

J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112. doi: 10.1137/S0036141099359317.

[3]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31 (2006), 1793-1810. doi: 10.1080/03605300600858960.

[4]

Y. Du, C. Liu and Q. Zhang, A blow-up criterion for 3-D compressible viscoelasticity,, , (). 

[5]

J. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system, Houston J. Math., 37 (2011), 627-636.

[6]

K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality, Ann. Math. (2), 48 (1947), 441-471. doi: 10.2307/1969180.

[7]

M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.

[8]

L. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains, SIAM J. Math. Anal., 42 (2010), 2610-2625. doi: 10.1137/10078503X.

[9]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198. doi: 10.1016/j.jde.2010.03.027.

[10]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231. doi: 10.1016/j.jde.2010.10.017.

[11]

F. John, Rotation and strain, Comm. Pure Appl. Math., 14 (1961), 391-413. doi: 10.1002/cpa.3160140316.

[12]

F. John, Distance changes in deformations with small strain, in 1970 Studies and Essays (Presented to Yu-why Chen on his 60th Birthday, April 1, 1970), Math. Res. Center, Nat. Taiwan Univ., Taipei, 1970, 1-15.

[13]

P. Kessenich, Global Existence with Small Initial Data for Three-Dimensional Incompressible Isotropic Viscoelastic Materials, Ph.D Thesis, University of California, Santa Barbara, 2008.

[14]

Z. Lei, On 2D viscoelasticity with small strain, Archive Ration. Mech. Anal., 198 (2010), 13-37. doi: 10.1007/s00205-010-0346-2.

[15]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chin. Ann. Math. Ser. B, 27 (2006), 565-580. doi: 10.1007/s11401-005-0041-z.

[16]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Comm. Math. Sci., 5 (2007), 595-616. doi: 10.4310/CMS.2007.v5.n3.a5.

[17]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x.

[18]

Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids, J. Differential Equations, 250 (2011), 3813-3830. doi: 10.1016/j.jde.2011.01.005.

[19]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814. doi: 10.1137/040618813.

[20]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471. doi: 10.1002/cpa.20074.

[21]

F.-H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558. doi: 10.1002/cpa.20219.

[22]

P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.

[23]

C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Rat. Mech Anal., 159 (2001), 229-252. doi: 10.1007/s002050100158.

[24]

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows, J. Math. Pures Appl. (9), 96 (2011), 502-520. doi: 10.1016/j.matpur.2011.04.008.

[25]

N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows, Invent. Math., 191 (2013), 427-500. doi: 10.1007/s00222-012-0399-y.

[26]

J. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Anal., 72 (2010), 3222-3234. doi: 10.1016/j.na.2009.12.022.

[27]

J. Qian, Initial boundary value problems for the compressible viscoelastic fluid, J. Differential Equations, 250 (2011), 848-865. doi: 10.1016/j.jde.2010.07.026.

[28]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835-868. doi: 10.1007/s00205-010-0351-5.

[29]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2), 151 (2000), 849-874. doi: 10.2307/121050.

[30]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750-788. doi: 10.1002/cpa.20049.

[31]

T. C. Sideris and B. Thomases, Local energy decay for solutions of multi-dimensional isotropic symmetric hyperbolic systems, J. Hyperbolic Differ. Equ., 3 (2006), 673-690. doi: 10.1142/S0219891606000975.

[32]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics, Comm. Pure Appl. Math., 60 (2007), 1707-1730. doi: 10.1002/cpa.20196.

[33]

Y. Sun and Z. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain, Comm. Math. Phys., 303 (2011), 361-383. doi: 10.1007/s00220-010-1170-0.

[34]

T. Zhang and D. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework,, , (). 

[35]

T. Zhang and D. Fang, Global existence in critical spaces for incompressible viscoelastic fluids,, , (). 

show all references

References:
[1]

R. Agemi, Global existence of nonlinear elastic waves, Invent. Math., 142 (2000), 225-250. doi: 10.1007/s002220000084.

[2]

J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112. doi: 10.1137/S0036141099359317.

[3]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31 (2006), 1793-1810. doi: 10.1080/03605300600858960.

[4]

Y. Du, C. Liu and Q. Zhang, A blow-up criterion for 3-D compressible viscoelasticity,, , (). 

[5]

J. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system, Houston J. Math., 37 (2011), 627-636.

[6]

K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality, Ann. Math. (2), 48 (1947), 441-471. doi: 10.2307/1969180.

[7]

M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.

[8]

L. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains, SIAM J. Math. Anal., 42 (2010), 2610-2625. doi: 10.1137/10078503X.

[9]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198. doi: 10.1016/j.jde.2010.03.027.

[10]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231. doi: 10.1016/j.jde.2010.10.017.

[11]

F. John, Rotation and strain, Comm. Pure Appl. Math., 14 (1961), 391-413. doi: 10.1002/cpa.3160140316.

[12]

F. John, Distance changes in deformations with small strain, in 1970 Studies and Essays (Presented to Yu-why Chen on his 60th Birthday, April 1, 1970), Math. Res. Center, Nat. Taiwan Univ., Taipei, 1970, 1-15.

[13]

P. Kessenich, Global Existence with Small Initial Data for Three-Dimensional Incompressible Isotropic Viscoelastic Materials, Ph.D Thesis, University of California, Santa Barbara, 2008.

[14]

Z. Lei, On 2D viscoelasticity with small strain, Archive Ration. Mech. Anal., 198 (2010), 13-37. doi: 10.1007/s00205-010-0346-2.

[15]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chin. Ann. Math. Ser. B, 27 (2006), 565-580. doi: 10.1007/s11401-005-0041-z.

[16]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Comm. Math. Sci., 5 (2007), 595-616. doi: 10.4310/CMS.2007.v5.n3.a5.

[17]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x.

[18]

Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids, J. Differential Equations, 250 (2011), 3813-3830. doi: 10.1016/j.jde.2011.01.005.

[19]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814. doi: 10.1137/040618813.

[20]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471. doi: 10.1002/cpa.20074.

[21]

F.-H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558. doi: 10.1002/cpa.20219.

[22]

P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.

[23]

C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Rat. Mech Anal., 159 (2001), 229-252. doi: 10.1007/s002050100158.

[24]

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows, J. Math. Pures Appl. (9), 96 (2011), 502-520. doi: 10.1016/j.matpur.2011.04.008.

[25]

N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows, Invent. Math., 191 (2013), 427-500. doi: 10.1007/s00222-012-0399-y.

[26]

J. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Anal., 72 (2010), 3222-3234. doi: 10.1016/j.na.2009.12.022.

[27]

J. Qian, Initial boundary value problems for the compressible viscoelastic fluid, J. Differential Equations, 250 (2011), 848-865. doi: 10.1016/j.jde.2010.07.026.

[28]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835-868. doi: 10.1007/s00205-010-0351-5.

[29]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2), 151 (2000), 849-874. doi: 10.2307/121050.

[30]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750-788. doi: 10.1002/cpa.20049.

[31]

T. C. Sideris and B. Thomases, Local energy decay for solutions of multi-dimensional isotropic symmetric hyperbolic systems, J. Hyperbolic Differ. Equ., 3 (2006), 673-690. doi: 10.1142/S0219891606000975.

[32]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics, Comm. Pure Appl. Math., 60 (2007), 1707-1730. doi: 10.1002/cpa.20196.

[33]

Y. Sun and Z. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain, Comm. Math. Phys., 303 (2011), 361-383. doi: 10.1007/s00220-010-1170-0.

[34]

T. Zhang and D. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework,, , (). 

[35]

T. Zhang and D. Fang, Global existence in critical spaces for incompressible viscoelastic fluids,, , (). 

[1]

Miroslav Bulíček, Victoria Patel, Yasemin Şengül, Endre Süli. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1931-1960. doi: 10.3934/cpaa.2021053

[2]

Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852

[3]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[4]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[5]

Samuel Amstutz, Nicolas Van Goethem. Existence and asymptotic results for an intrinsic model of small-strain incompatible elasticity. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3769-3805. doi: 10.3934/dcdsb.2020240

[6]

Boqing Dong, Wenjuan Wang, Jiahong Wu, Hui Zhang. Global regularity results for the climate model with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 211-229. doi: 10.3934/dcdsb.2018102

[7]

Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113

[8]

Ying Zhang. Wave breaking and global existence for the periodic rotation-Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2243-2257. doi: 10.3934/dcds.2017097

[9]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[10]

Colette Guillopé, Abdelilah Hakim, Raafat Talhouk. Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle. Communications on Pure and Applied Analysis, 2005, 4 (1) : 23-43. doi: 10.3934/cpaa.2005.4.23

[11]

Eduard Feireisl. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 173-183. doi: 10.3934/dcdss.2016.9.173

[12]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[13]

Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1193-1200. doi: 10.3934/dcds.2003.9.1193

[14]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[15]

Yue Pang, Xingchang Wang, Furong Wu. Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4439-4463. doi: 10.3934/dcdss.2021115

[16]

Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic and Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373

[17]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[18]

Yana Guo, Yan Jia, Bo-Qing Dong. Global stability solution of the 2D MHD equations with mixed partial dissipation. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 885-902. doi: 10.3934/dcds.2021141

[19]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[20]

Bassam Kojok. Global existence for a forced dispersive dissipative equation via the I-method. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1401-1419. doi: 10.3934/cpaa.2009.8.1401

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]