\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the higher-order b-family equation and Euler equations on the circle

Abstract Related Papers Cited by
  • Considered herein is a geometric investigation on the higher-order b-family equation describing exponential curves of the manifold of smooth orientation-preserving diffeomorphisms of the unit circle in the plane. It is shown that the higher-order $b-$family equation can only be realized as an Euler equation on the Lie group Diff$(\mathbb{S}^1) $ of all smooth and orientation preserving diffeomorphisms on the circle if the parameter $b=2$ which corresponds to the higher-order Camassa-Holm equation with the metric $H^k, k\ge 1. $
    Mathematics Subject Classification: Primary: 35Q35, 58D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenobite), 16 (1966), 319-361.doi: 10.5802/aif.233.

    [2]

    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [3]

    K.-S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves, Physica D, 162 (2002), 9-33.doi: 10.1016/S0167-2789(01)00364-5.

    [4]

    G. M. Coclite, H. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, J. Differential Equations, 246 (2009), 929-963.doi: 10.1016/j.jde.2008.04.014.

    [5]

    A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.doi: 10.1006/jfan.1997.3231.

    [6]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [7]

    A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N. S.), 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7.

    [8]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2), 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [9]

    A. Constantin, T. Kappeler, B. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180.doi: 10.1007/s10455-006-9042-8.

    [10]

    A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6.

    [11]

    A. Constantin and B. Kolev, Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlin. Sci., 16 (2006), 109-122.doi: 10.1007/s00332-005-0707-4.

    [12]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [13]

    A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.

    [14]

    A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation, Physica D, 157 (2001), 75-89.doi: 10.1016/S0167-2789(01)00298-6.

    [15]

    K.-S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves, Physica D, 162 (2002), 9-33.doi: 10.1016/S0167-2789(01)00364-5.

    [16]

    A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.

    [17]

    A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory (eds. A. Degasperis and G. Gaeta) (Rome, 1998), World Scientific Publ., River Edge, NJ, 1999, 23-37.

    [18]

    J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z., 269 (2011), 1137-1153.doi: 10.1007/s00209-010-0778-2.

    [19]

    J. Escher and J. Seiler, The periodic $b$-equations and Euler equations on the circle, J. Math. Phys., 51 (2010), 053101, 6 pp.doi: 10.1063/1.3405494.

    [20]

    B. Fuchssteiner and A. Fokas, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981/1982), 47-66. doi: 10.1016/0167-2789(81)90004-X.

    [21]

    P. Górka and E. G. Reyes, The modified Camassa-Holm equation, Int. Math. Res. Notes, 2011 (2011), 2617-2649.doi: 10.1093/imrn/rnq163.

    [22]

    J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.doi: 10.1137/0151075.

    [23]

    R. Ivanov, Water waves and integrability, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2267-2280.doi: 10.1098/rsta.2007.2007.

    [24]

    J. Lenells, Stability of periodic peakons, Int. Math. Res. Not., 2004 (2004), 485-499.doi: 10.1155/S1073792804132431.

    [25]

    J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151-163.doi: 10.2991/jnmp.2004.11.2.2.

    [26]

    B. Khesin, J. Lenells and G. Misiołek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann., 342 (2008), 617-656.doi: 10.1007/s00208-008-0250-3.

    [27]

    B. Khesin and G. Misiołek, Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math., 176 (2003), 116-144.doi: 10.1016/S0001-8708(02)00063-4.

    [28]

    S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.doi: 10.1063/1.532690.

    [29]

    J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere, J. Geom. Phys., 57 (2007), 2049-2064.doi: 10.1016/j.geomphys.2007.05.003.

    [30]

    J. E. Marsden and T. Ratiu, Introcudction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999.

    [31]

    G. Misiołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.

    [32]

    V. Yu. Ovsienko and B. Khesin, The super Korteweg-de Vries equation as an Euler equation, Funktsional. Anal. i Prilozhen., 21 (1987), 81-82.

    [33]

    E. G. Reyes, Geometric integrability of the Camassa-Holm equation, Lett. Math. Phys., 59 (2002), 117-131.doi: 10.1023/A:1014933316169.

    [34]

    M. Zhu, Y. Liu and C. Z. Qu, On the model of the compressible hyperelastic rods and Euler equations on the circle, J. Differential Equations, 254 (2013), 648-659.doi: 10.1016/j.jde.2012.09.012.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return