-
Previous Article
Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories
- DCDS Home
- This Issue
-
Next Article
One-dimensional weakly nonlinear model equations for Rossby waves
Recovering surface profiles of solitary waves on a uniform stream from pressure measurements
1. | Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom |
References:
[1] |
C. J. Amick and J. F. Toland, On solitary water waves of finite amplitude, Arch. Rat. Mech. Anal., 76 (1981), 9-95.
doi: 10.1007/BF00250799. |
[2] |
A. Baquerizo and M. A. Losada, Transfer function between wave height and wave pressure for progressive waves, by Y.-Y. Kuo and J.-F. Chiu: Comments, Coast. Engng., 24 (1995), 351-353.
doi: 10.1016/0378-3839(94)00038-Y. |
[3] |
C. T. Bishop and M. A. Donelan, Measuring waves with pressure transducers, Coast. Engng., 11 (1987), 309-328.
doi: 10.1016/0378-3839(87)90031-7. |
[4] |
D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-575.
doi: 10.1017/jfm.2012.490. |
[5] |
D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558.
doi: 10.1017/jfm.2013.253. |
[6] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[7] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[8] |
A. Constantin, On the particle paths in solitary water waves, Quart. Appl. Math., 68 (2010), 81-90. |
[9] |
A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384.
doi: 10.1017/jfm.2012.114. |
[10] |
A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: Mathematical theory and experiments, Arch. Rat. Mech. Anal., 201 (2011), 251-269.
doi: 10.1007/s00205-011-0396-0. |
[11] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Commun. Pure Appl. Math., 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[12] |
W. Craig and P. Sternberg, Symmetry of solitary waves, Commun. Part. Diff. Equ., 13 (1988), 603-633.
doi: 10.1080/03605308808820554. |
[13] |
B. Deconinck, D. Henderson, K. L. Oliveras and V. Vasan, Recovering the water-wave surface from pressure measurements, in 10th International Conference on Mathematical and Numerical Aspects of Waves, WAVES 2011, Vancouver, 2011. |
[14] |
J. Escher and T. Schlurmann, On the recovery of the free surface from the pressure within periodic traveling water waves, J. Nonlinear Math. Phys., 15 (2008), 50-57.
doi: 10.2991/jnmp.2008.15.s2.4. |
[15] |
F. G. Friedlander, Introduction to the Theory of Distributions, Second edition, Cambridge University Press, Cambridge, 1998. |
[16] |
D. Henry, On the pressure transfer function for solitary water waves with vorticity, Math. Ann., 357 (2013), 23-30.
doi: 10.1007/s00208-013-0899-0. |
[17] |
Y.-Y. Kuo and Y.-F. Chiu, Transfer function between the wave height and wave pressure for progressive waves, Coast. Engng., 23 (1994), 81-93.
doi: 10.1016/0378-3839(94)90016-7. |
[18] |
J. B. Mcleod, The rate of decay of solitary waves of finite amplitude, Appl. Anal., 17 (1983), 37-50.
doi: 10.1080/00036818308839482. |
[19] |
K. L. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918.
doi: 10.1137/110853285. |
[20] |
R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1994. |
[21] |
C.-H. Tsai, M.-C. Huang, F.-J. Young, Y.-C. Lin and H.-W. Li, On the recovery of surface wave by pressure transfer function, Ocean Engng., 32 (2005), 1247-1259.
doi: 10.1016/j.oceaneng.2004.10.020. |
show all references
References:
[1] |
C. J. Amick and J. F. Toland, On solitary water waves of finite amplitude, Arch. Rat. Mech. Anal., 76 (1981), 9-95.
doi: 10.1007/BF00250799. |
[2] |
A. Baquerizo and M. A. Losada, Transfer function between wave height and wave pressure for progressive waves, by Y.-Y. Kuo and J.-F. Chiu: Comments, Coast. Engng., 24 (1995), 351-353.
doi: 10.1016/0378-3839(94)00038-Y. |
[3] |
C. T. Bishop and M. A. Donelan, Measuring waves with pressure transducers, Coast. Engng., 11 (1987), 309-328.
doi: 10.1016/0378-3839(87)90031-7. |
[4] |
D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-575.
doi: 10.1017/jfm.2012.490. |
[5] |
D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558.
doi: 10.1017/jfm.2013.253. |
[6] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[7] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[8] |
A. Constantin, On the particle paths in solitary water waves, Quart. Appl. Math., 68 (2010), 81-90. |
[9] |
A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384.
doi: 10.1017/jfm.2012.114. |
[10] |
A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: Mathematical theory and experiments, Arch. Rat. Mech. Anal., 201 (2011), 251-269.
doi: 10.1007/s00205-011-0396-0. |
[11] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Commun. Pure Appl. Math., 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[12] |
W. Craig and P. Sternberg, Symmetry of solitary waves, Commun. Part. Diff. Equ., 13 (1988), 603-633.
doi: 10.1080/03605308808820554. |
[13] |
B. Deconinck, D. Henderson, K. L. Oliveras and V. Vasan, Recovering the water-wave surface from pressure measurements, in 10th International Conference on Mathematical and Numerical Aspects of Waves, WAVES 2011, Vancouver, 2011. |
[14] |
J. Escher and T. Schlurmann, On the recovery of the free surface from the pressure within periodic traveling water waves, J. Nonlinear Math. Phys., 15 (2008), 50-57.
doi: 10.2991/jnmp.2008.15.s2.4. |
[15] |
F. G. Friedlander, Introduction to the Theory of Distributions, Second edition, Cambridge University Press, Cambridge, 1998. |
[16] |
D. Henry, On the pressure transfer function for solitary water waves with vorticity, Math. Ann., 357 (2013), 23-30.
doi: 10.1007/s00208-013-0899-0. |
[17] |
Y.-Y. Kuo and Y.-F. Chiu, Transfer function between the wave height and wave pressure for progressive waves, Coast. Engng., 23 (1994), 81-93.
doi: 10.1016/0378-3839(94)90016-7. |
[18] |
J. B. Mcleod, The rate of decay of solitary waves of finite amplitude, Appl. Anal., 17 (1983), 37-50.
doi: 10.1080/00036818308839482. |
[19] |
K. L. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918.
doi: 10.1137/110853285. |
[20] |
R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1994. |
[21] |
C.-H. Tsai, M.-C. Huang, F.-J. Young, Y.-C. Lin and H.-W. Li, On the recovery of surface wave by pressure transfer function, Ocean Engng., 32 (2005), 1247-1259.
doi: 10.1016/j.oceaneng.2004.10.020. |
[1] |
Darryl D. Holm, Ruiao Hu. Nonlinear dispersion in wave-current interactions. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022004 |
[2] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051 |
[3] |
Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483 |
[4] |
Vishal Vasan, Katie Oliveras. Pressure beneath a traveling wave with constant vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3219-3239. doi: 10.3934/dcds.2014.34.3219 |
[5] |
Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391 |
[6] |
Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153 |
[7] |
Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623 |
[8] |
Jibin Li. Family of nonlinear wave equations which yield loop solutions and solitary wave solutions. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 897-907. doi: 10.3934/dcds.2009.24.897 |
[9] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[10] |
Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 419-432. doi: 10.3934/dcds.1997.3.419 |
[11] |
Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77 |
[12] |
Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2961-2981. doi: 10.3934/cpaa.2019132 |
[13] |
Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-hamiltonian dynamical system ii. complex analytic behavior and convergence to non-analytic solutions. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 159-191. doi: 10.3934/dcds.1998.4.159 |
[14] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[15] |
George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243 |
[16] |
Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188 |
[17] |
Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601 |
[18] |
Amir Moradifam, Robert Lopez. Stability of current density impedance imaging II. Communications on Pure and Applied Analysis, 2021, 20 (11) : 4025-4041. doi: 10.3934/cpaa.2021142 |
[19] |
Guohua Zhang. Variational principles of pressure. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409 |
[20] |
Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]