Advanced Search
Article Contents
Article Contents

Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation

Abstract Related Papers Cited by
  • Steady-states and traveling-waves of the generalized Constantin--Lax--Majda equation are computed and their asymptotic behavior is described. Their relation with possible blow-up and the Benjamin--Ono equation is discussed.
    Mathematics Subject Classification: Primary: 35Q35; Secondary: 35C07, 76B03.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Brezis, Blow-up for $u_t - \Delta u = g(u)$ revisited, Adv. Diff. Eqns., 1 (1996), 73-90.


    A. Castro and D. Cordoba, Infinite energy solutions of the surface quasi-geostrophic equation, Adv. Math., 225 (2010), 1820-1829.doi: 10.1016/j.aim.2010.04.018.


    A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pure Appl., 86 (2006), 529-540.doi: 10.1016/j.matpur.2006.08.002.


    A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. Math., 162 (2005), 1-13.doi: 10.4007/annals.2005.162.1377.


    P. Constantin, P. D. Lax and A. J. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math., 38 (1985), 715-724.doi: 10.1002/cpa.3160380605.


    S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Stat. Phys., 59 (1990), 1251-1263.doi: 10.1007/BF01334750.


    S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation, Math. Meth. Appl. Sci., 19 (1996), 1233-1255.doi: 10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W.


    J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation, Comm. Pure Appl. Anal., 11 (2012), 1407-1419.doi: 10.3934/cpaa.2012.11.1407.


    M. Fila and H. Matano, Blow-up in nonlinear heat equations from the dynamical systems point of view, in Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, 2002, 723-758.doi: 10.1016/S1874-575X(02)80035-2.


    S. Hamada, Numerical solutions of Serrin's equations by double exponential transformation, Publ. RIMS, 43 (2007), 795-817.doi: 10.2977/prims/1201012042.


    T. Hou, C. Li, Z. Shi, S. Wang and X. Yu, On singularity formation of a nonlinear nonlocal system, Arch. Rational Mech. Anal., 199 (2011), 117-144.doi: 10.1007/s00205-010-0319-5.


    Y. Katznelson, An Introduction to Harmonic Analysis, 3rd Ed., Camb. Univ. Press, 2004.


    K. Kobayashi, H. Okamoto and J. Zhu, Numerical computation of water and solitary waves by the double exponential transform, J. Comp. Appl. Math., 152 (2003), 229-241.doi: 10.1016/S0377-0427(02)00708-2.


    H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Commun. Math. Phys., 214 (2000), 191-200.doi: 10.1007/s002200000267.


    Yu. P. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, 1964.


    Y. Matsuno, Bilinear Transformation Method, Academic Press, 1984.


    M. Mori, A. Nurmuhammad and M. Muhammad, DE-sinc method for second order singularly perturbed boundary value problems, Japan J. Indust. Appl. Math., 26 (2009), 41-63.doi: 10.1007/BF03167545.


    M. Nagayama, H. Okamoto and J. Zhu, On the blow-up of some similarity solutions of the Navier-Stokes equations, Quader. di Mat., 10 (2003), 137-162.


    K. Ohkitani, The Fefferman-Stein decomposition for the Constantin-Lax-Majda equation: Regularity criteria for inviscid fluid dynamics revisited, J. Math. Phys., 53 (2012), 115607.doi: 10.1063/1.4738639.


    H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid, J. Phys. Soc. Japan, 74 (2005), 2737-2742.doi: 10.1143/JPSJ.74.2737.


    H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation, Nonlinearity, 21 (2008), 2447-2461.doi: 10.1088/0951-7715/21/10/013.


    T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind, J. Comp. Appl. Math., 234 (2010), 1211-1227.doi: 10.1016/j.cam.2009.07.049.


    H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), 1082-1091.doi: 10.1143/JPSJ.39.1082.


    E. Yanagida, Blow-up of Solutions of the Nonlinear Heat Equations, in Blow-up and Aggregation, (ed. by E. Yanagida), University of Tokyo Press 2006, 1-50 (in Japanese).


    M. Wunsch, The generalized Constantin-Lax-Majda equation, Comm. Math. Sci., 9 (2011), 929-936.doi: 10.4310/CMS.2011.v9.n3.a12.


    M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric, J. Nonlinear Math. Phys., 17 (2010), 7-11.doi: 10.1142/S1402925110000544.


    M. Wunsch, The generalized Constantin-Lax-Majda equation revisited, Comm. Math. Sci., 9 (2011), 929-936.doi: 10.4310/CMS.2011.v9.n3.a12.

  • 加载中

Article Metrics

HTML views() PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint