-
Previous Article
Justification of leading order quasicontinuum approximations of strongly nonlinear lattices
- DCDS Home
- This Issue
-
Next Article
A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity
On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions
1. | Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, 230026, Anhui Province, China |
References:
[1] |
J. Math. Pures Appl., 76 (1997), 265-288.
doi: 10.1016/S0021-7824(97)89952-7. |
[2] |
Invent. Math., 177 (2009), 307-335.
doi: 10.1007/s00222-009-0179-5. |
[3] |
Discrete Contin. Dyn. Syst., 28 (2010), 789-807.
doi: 10.3934/dcds.2010.28.789. |
[4] |
Indiana Univ. Math. J., 60 (2011), 101-–119.
doi: 10.1512/iumj.2011.60.4222. |
[5] |
Indiana Univ. Math. J., 58 (2009), 1565-1589.
doi: 10.1512/iumj.2009.58.3539. |
[6] |
Comm. Math. Phys., 86 (1982), 143-147.
doi: 10.1007/BF01205665. |
[7] |
Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387-393. |
[8] |
Potential Anal., 12 (2000), 49-71.
doi: 10.1023/A:1008641618547. |
[9] |
Duke Math. J., 52 (1985), 281-545.
doi: 10.1215/S0012-7094-85-05221-4. |
[10] |
Comm. Pure Appl. Math., 60 (2007), 1769-1791.
doi: 10.1002/cpa.20197. |
[11] |
Acta Mathematica Sinica, English Series, 29 (2013), 651-674.
doi: 10.1007/s10114-012-1495-z. |
[12] |
C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint., (). Google Scholar |
[13] |
Chinese Ann. Math. Ser. B, 27 (2006), 595-614.
doi: 10.1007/s11401-005-0575-0. |
[14] |
Invent. Math., 151 (2003), 553-577.
doi: 10.1007/s00222-002-0259-2. |
[15] |
Comm. Pure Appl. Math., 59 (2006), 1352-1376.
doi: 10.1002/cpa.20118. |
[16] |
, P. Guan and X. W. Zhang,, private communication., (). Google Scholar |
[17] |
Calc. Var. Partial Differential Equations, 42 (2011), 43-72.
doi: 10.1007/s00526-010-0379-2. |
[18] |
Manuscripta Math., 138 (2012), 89-118.
doi: 10.1007/s00229-011-0485-2. |
[19] |
Math. Methods Appl. Sci., 8 (1986), 93-101.
doi: 10.1002/mma.1670080107. |
[20] |
Indiana Univ. Math. J., 34 (1985), 687-704.
doi: 10.1512/iumj.1985.34.34036. |
[21] |
J. Math. Anal. Appl., 133 (1988), 324-330.
doi: 10.1016/0022-247X(88)90404-0. |
[22] |
Indiana Univ. Math. J., 32 (1983), 73-81.
doi: 10.1512/iumj.1983.32.32007. |
[23] |
Indiana Univ. Math. J., 32 (1983), 603-614.
doi: 10.1512/iumj.1983.32.32042. |
[24] |
Comm. Partial Differential Equations, 15 (1990), 541-556.
doi: 10.1080/03605309908820698. |
[25] |
Arch. Rational Mech. Anal., 97 (1987), 19-32.
doi: 10.1007/BF00279844. |
[26] |
World Scientific, 1996. |
[27] |
Adv. Math., 225 (2010), 1616-1633.
doi: 10.1016/j.aim.2010.04.003. |
[28] |
J. Funct. Anal., 255 (2008), 1713-1723.
doi: 10.1016/j.jfa.2008.06.008. |
[29] |
J. Austral. Math. Soc. Ser. A, 56 (1994), 41-52.
doi: 10.1017/S1446788700034728. |
[30] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 319-333. |
[31] |
Commun. Pure Appl. Math., 24 (1971), 71-115.
doi: 10.1002/cpa.3160240107. |
show all references
References:
[1] |
J. Math. Pures Appl., 76 (1997), 265-288.
doi: 10.1016/S0021-7824(97)89952-7. |
[2] |
Invent. Math., 177 (2009), 307-335.
doi: 10.1007/s00222-009-0179-5. |
[3] |
Discrete Contin. Dyn. Syst., 28 (2010), 789-807.
doi: 10.3934/dcds.2010.28.789. |
[4] |
Indiana Univ. Math. J., 60 (2011), 101-–119.
doi: 10.1512/iumj.2011.60.4222. |
[5] |
Indiana Univ. Math. J., 58 (2009), 1565-1589.
doi: 10.1512/iumj.2009.58.3539. |
[6] |
Comm. Math. Phys., 86 (1982), 143-147.
doi: 10.1007/BF01205665. |
[7] |
Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387-393. |
[8] |
Potential Anal., 12 (2000), 49-71.
doi: 10.1023/A:1008641618547. |
[9] |
Duke Math. J., 52 (1985), 281-545.
doi: 10.1215/S0012-7094-85-05221-4. |
[10] |
Comm. Pure Appl. Math., 60 (2007), 1769-1791.
doi: 10.1002/cpa.20197. |
[11] |
Acta Mathematica Sinica, English Series, 29 (2013), 651-674.
doi: 10.1007/s10114-012-1495-z. |
[12] |
C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint., (). Google Scholar |
[13] |
Chinese Ann. Math. Ser. B, 27 (2006), 595-614.
doi: 10.1007/s11401-005-0575-0. |
[14] |
Invent. Math., 151 (2003), 553-577.
doi: 10.1007/s00222-002-0259-2. |
[15] |
Comm. Pure Appl. Math., 59 (2006), 1352-1376.
doi: 10.1002/cpa.20118. |
[16] |
, P. Guan and X. W. Zhang,, private communication., (). Google Scholar |
[17] |
Calc. Var. Partial Differential Equations, 42 (2011), 43-72.
doi: 10.1007/s00526-010-0379-2. |
[18] |
Manuscripta Math., 138 (2012), 89-118.
doi: 10.1007/s00229-011-0485-2. |
[19] |
Math. Methods Appl. Sci., 8 (1986), 93-101.
doi: 10.1002/mma.1670080107. |
[20] |
Indiana Univ. Math. J., 34 (1985), 687-704.
doi: 10.1512/iumj.1985.34.34036. |
[21] |
J. Math. Anal. Appl., 133 (1988), 324-330.
doi: 10.1016/0022-247X(88)90404-0. |
[22] |
Indiana Univ. Math. J., 32 (1983), 73-81.
doi: 10.1512/iumj.1983.32.32007. |
[23] |
Indiana Univ. Math. J., 32 (1983), 603-614.
doi: 10.1512/iumj.1983.32.32042. |
[24] |
Comm. Partial Differential Equations, 15 (1990), 541-556.
doi: 10.1080/03605309908820698. |
[25] |
Arch. Rational Mech. Anal., 97 (1987), 19-32.
doi: 10.1007/BF00279844. |
[26] |
World Scientific, 1996. |
[27] |
Adv. Math., 225 (2010), 1616-1633.
doi: 10.1016/j.aim.2010.04.003. |
[28] |
J. Funct. Anal., 255 (2008), 1713-1723.
doi: 10.1016/j.jfa.2008.06.008. |
[29] |
J. Austral. Math. Soc. Ser. A, 56 (1994), 41-52.
doi: 10.1017/S1446788700034728. |
[30] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 319-333. |
[31] |
Commun. Pure Appl. Math., 24 (1971), 71-115.
doi: 10.1002/cpa.3160240107. |
[1] |
Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007 |
[2] |
Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789 |
[3] |
Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081 |
[4] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[5] |
Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851 |
[6] |
Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040 |
[7] |
Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109 |
[8] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[9] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[10] |
Christopher Goodrich, Carlos Lizama. Positivity, monotonicity, and convexity for convolution operators. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4961-4983. doi: 10.3934/dcds.2020207 |
[11] |
Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57 |
[12] |
Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867 |
[13] |
Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems & Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040 |
[14] |
Chadi Nour, Ron J. Stern, Jean Takche. Generalized exterior sphere conditions and $\varphi$-convexity. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 615-622. doi: 10.3934/dcds.2011.29.615 |
[15] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[16] |
Mustapha Ait Rami, John Moore. Partial stabilizability and hidden convexity of indefinite LQ problem. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 221-239. doi: 10.3934/naco.2016009 |
[17] |
Liran Rotem. Banach limit in convexity and geometric means for convex bodies. Electronic Research Announcements, 2016, 23: 41-51. doi: 10.3934/era.2016.23.005 |
[18] |
David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335 |
[19] |
Martin Gugat, Rüdiger Schultz, Michael Schuster. Convexity and starshapedness of feasible sets in stationary flow networks. Networks & Heterogeneous Media, 2020, 15 (2) : 171-195. doi: 10.3934/nhm.2020008 |
[20] |
Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]