• Previous Article
    Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension
  • DCDS Home
  • This Issue
  • Next Article
    On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions
September  2014, 34(9): 3403-3418. doi: 10.3934/dcds.2014.34.3403

Justification of leading order quasicontinuum approximations of strongly nonlinear lattices

1. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9315

3. 

Institut für Analysis, Dynamik und Modellierung, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Received  March 2013 Revised  November 2013 Published  March 2014

We consider the leading order quasicontinuum limits of a one-dimensional granular medium governed by the Hertz contact law under precompression. The approximate model which is derived in this limit is justified by establishing asymptotic bounds for the error with the help of energy estimates. The continuum model predicts the development of shock waves, which are also studied in the full system with the aid of numerical simulations. We also show that existing results concerning the Nonlinear Schrödinger (NLS) and Korteweg de-Vries (KdV) approximation of FPU models apply directly to a precompressed granular medium in the weakly nonlinear regime.
Citation: Christopher Chong, P.G. Kevrekidis, Guido Schneider. Justification of leading order quasicontinuum approximations of strongly nonlinear lattices. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3403-3418. doi: 10.3934/dcds.2014.34.3403
References:
[1]

K. Ahnert and A. Pikovsky, Compactons and chaos in strongly nonlinear lattices, Phys. Rev. E, 79 (2009), 026209. doi: 10.1103/PhysRevE.79.026209.

[2]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879-901. doi: 10.3934/dcdss.2012.5.879.

[3]

J. M. English and R. L. Pego, On the solitary wave pulse in a chain of beads, Proceedings of the AMS, 133 (2005), 1763-1768 (electronic). doi: 10.1090/S0002-9939-05-07851-2.

[4]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices, Comm. Math. Phys., 161 (1994), 391-418. doi: 10.1007/BF02099784.

[5]

J. Goodman and P. Lax, On dispersive difference schemes, Comm. Pure. Appl. Math., 41 (1988), 591-613. doi: 10.1002/cpa.3160410506.

[6]

E. B. Herbold and V. F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation, Phys. Rev. E, 75 (2007), 021304. doi: 10.1103/PhysRevE.75.021304.

[7]

M. Herrmann, Oscillatory waves in discrete scalar conservation laws, Math. Models Methods Appl. Sci., 22 (2012), 1150002. doi: 10.1142/S021820251200585X.

[8]

M. Herrmann and J. D. M Rademacher, Riemann solvers and undercompressive shocks of convex FPU chains, Nonlinearity, 23 (2010), 277-304. doi: 10.1088/0951-7715/23/2/004.

[9]

H. Hertz, On the contact of elastic solids, J. Reine Angew. Math., 92 (1881), 156-171.

[10]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[11]

P. G. Kevrekidis, Non-linear waves in lattices: Past, present, future, IMA Journal of Applied Mathematics, 76 (2011), 389-423. doi: 10.1093/imamat/hxr015.

[12]

P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop and E. S. Titi, Continuum approach to discreteness, Phys. Rev. E, 65 (2002), 046613. doi: 10.1103/PhysRevE.65.046613.

[13]

P. D. Lax, On dispersive difference schemes, Physica D, 18 (1986), 250-254. doi: 10.1016/0167-2789(86)90185-5.

[14]

R. J. Leveque, Numerical Methods for Conservation Laws (Lectures in Mathematics), Birkhauser, 1992. doi: 10.1007/978-3-0348-8629-1.

[15]

A. Molinari and C. Daraio, Stationary shocks in periodic highly nonlinear granular chains, Phys. Rev. E, 80 (2009), 056602. doi: 10.1103/PhysRevE.80.056602.

[16]

V.F. Nesterenko, Dynamics of Heterogeneous Materials, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3524-6.

[17]

P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit, Physics Letters A, 118 (1986), 222-227. doi: 10.1016/0375-9601(86)90170-2.

[18]

P. Rosenau, Dynamics of dense lattices, Phys. Rev. B, 36 (1987), 5868-5876. doi: 10.1103/PhysRevB.36.5868.

[19]

G. Schneider, Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system, Appl. Anal., 89 (2010), 1523-1539. doi: 10.1080/00036810903277150.

[20]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, International Conference on Differential Equations. Proceedings of the Conference, Equadiff '99, Berlin, Germany, (ed. B. Fiedler et al.), (1999). 1.Singapore: World Scientific. 390-404, (2000).

[21]

S. Sen, J. Hong, J. Bang, E. Avalos and R. Doney, Solitary waves in the granular chain, Physics Reports, 462 (2008), 21-66. doi: 10.1016/j.physrep.2007.10.007.

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, Heidelberg, Berlin, 1983.

[23]

A. Stefanov and P. Kevrekidis, On the existence of solitary traveling waves for generalized hertzian chains, J. Nonlin. Sci., 22 (2012), 327-349. doi: 10.1007/s00332-011-9119-9.

[24]

A. Stefanov and P. Kevrekidis, Traveling waves for monomer chains with precompression, Nonlinearity, 26 (2013), 539-564. doi: 10.1088/0951-7715/26/2/539.

show all references

References:
[1]

K. Ahnert and A. Pikovsky, Compactons and chaos in strongly nonlinear lattices, Phys. Rev. E, 79 (2009), 026209. doi: 10.1103/PhysRevE.79.026209.

[2]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879-901. doi: 10.3934/dcdss.2012.5.879.

[3]

J. M. English and R. L. Pego, On the solitary wave pulse in a chain of beads, Proceedings of the AMS, 133 (2005), 1763-1768 (electronic). doi: 10.1090/S0002-9939-05-07851-2.

[4]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices, Comm. Math. Phys., 161 (1994), 391-418. doi: 10.1007/BF02099784.

[5]

J. Goodman and P. Lax, On dispersive difference schemes, Comm. Pure. Appl. Math., 41 (1988), 591-613. doi: 10.1002/cpa.3160410506.

[6]

E. B. Herbold and V. F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation, Phys. Rev. E, 75 (2007), 021304. doi: 10.1103/PhysRevE.75.021304.

[7]

M. Herrmann, Oscillatory waves in discrete scalar conservation laws, Math. Models Methods Appl. Sci., 22 (2012), 1150002. doi: 10.1142/S021820251200585X.

[8]

M. Herrmann and J. D. M Rademacher, Riemann solvers and undercompressive shocks of convex FPU chains, Nonlinearity, 23 (2010), 277-304. doi: 10.1088/0951-7715/23/2/004.

[9]

H. Hertz, On the contact of elastic solids, J. Reine Angew. Math., 92 (1881), 156-171.

[10]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[11]

P. G. Kevrekidis, Non-linear waves in lattices: Past, present, future, IMA Journal of Applied Mathematics, 76 (2011), 389-423. doi: 10.1093/imamat/hxr015.

[12]

P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop and E. S. Titi, Continuum approach to discreteness, Phys. Rev. E, 65 (2002), 046613. doi: 10.1103/PhysRevE.65.046613.

[13]

P. D. Lax, On dispersive difference schemes, Physica D, 18 (1986), 250-254. doi: 10.1016/0167-2789(86)90185-5.

[14]

R. J. Leveque, Numerical Methods for Conservation Laws (Lectures in Mathematics), Birkhauser, 1992. doi: 10.1007/978-3-0348-8629-1.

[15]

A. Molinari and C. Daraio, Stationary shocks in periodic highly nonlinear granular chains, Phys. Rev. E, 80 (2009), 056602. doi: 10.1103/PhysRevE.80.056602.

[16]

V.F. Nesterenko, Dynamics of Heterogeneous Materials, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3524-6.

[17]

P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit, Physics Letters A, 118 (1986), 222-227. doi: 10.1016/0375-9601(86)90170-2.

[18]

P. Rosenau, Dynamics of dense lattices, Phys. Rev. B, 36 (1987), 5868-5876. doi: 10.1103/PhysRevB.36.5868.

[19]

G. Schneider, Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system, Appl. Anal., 89 (2010), 1523-1539. doi: 10.1080/00036810903277150.

[20]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, International Conference on Differential Equations. Proceedings of the Conference, Equadiff '99, Berlin, Germany, (ed. B. Fiedler et al.), (1999). 1.Singapore: World Scientific. 390-404, (2000).

[21]

S. Sen, J. Hong, J. Bang, E. Avalos and R. Doney, Solitary waves in the granular chain, Physics Reports, 462 (2008), 21-66. doi: 10.1016/j.physrep.2007.10.007.

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, Heidelberg, Berlin, 1983.

[23]

A. Stefanov and P. Kevrekidis, On the existence of solitary traveling waves for generalized hertzian chains, J. Nonlin. Sci., 22 (2012), 327-349. doi: 10.1007/s00332-011-9119-9.

[24]

A. Stefanov and P. Kevrekidis, Traveling waves for monomer chains with precompression, Nonlinearity, 26 (2013), 539-564. doi: 10.1088/0951-7715/26/2/539.

[1]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[2]

Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $ L^2 $-norm control constraint. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022030

[3]

Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901

[4]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[5]

Rua Murray. Approximation error for invariant density calculations. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 535-557. doi: 10.3934/dcds.1998.4.535

[6]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[7]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[8]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[11]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[12]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[13]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[14]

Marcone C. Pereira, Ricardo P. Silva. Error estimates for a Neumann problem in highly oscillating thin domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 803-817. doi: 10.3934/dcds.2013.33.803

[15]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[16]

Wolf-Jürgen Beyn, Raphael Kruse. Two-sided error estimates for the stochastic theta method. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 389-407. doi: 10.3934/dcdsb.2010.14.389

[17]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[18]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[19]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[20]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (6)

[Back to Top]