    September  2014, 34(9): 3437-3454. doi: 10.3934/dcds.2014.34.3437

## On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation

 1 Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912 2 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2

Received  September 2013 Revised  December 2013 Published  March 2014

We consider a transport-diffusion equation of the form $\partial_t \theta + v \cdot \nabla \theta + \nu \mathcal{A} \theta = 0$, where $v$ is a given time-dependent vector field on $\mathbb R^d$. The operator $\mathcal{A}$ represents log-modulated fractional dissipation: $\mathcal{A}=\frac {|\nabla|^{\gamma}}{\log^{\beta}(\lambda+|\nabla|)}$ and the parameters $\nu\ge 0$, $\beta\ge 0$, $0\le \gamma \le 2$, $\lambda>1$. We introduce a novel nonlocal decomposition of the operator $\mathcal{A}$ in terms of a weighted integral of the usual fractional operators $|\nabla|^{s}$, $0\le s \le \gamma$ plus a smooth remainder term which corresponds to an $L^1$ kernel. For a general vector field $v$ (possibly non-divergence-free) we prove a generalized $L^\infty$ maximum principle of the form $\| \theta(t)\|_\infty \le e^{Ct} \| \theta_0 \|_{\infty}$ where the constant $C=C(\nu,\beta,\gamma)>0$. In the case $\text{div}(v)=0$ the same inequality holds for $\|\theta(t)\|_p$ with $1\le p \le \infty$. Under the additional assumption that $\theta_0\in L^2$, we show that $\|\theta(t)\|_p$ is uniformly bounded for $2\le p\le \infty$. At the cost of a possible exponential factor, this extends a recent result of Hmidi  to the full regime $d\ge 1$, $0\le \gamma \le 2$ and removes the incompressibility assumption in the $L^\infty$ case.
Citation: Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437
##### References:
  R. Askey, Radial Characteristic Functions, University of Wisconsin-Madison, Mathematics Research Center, 1262, 1973. A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.   C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst., 27 (2010), 847-861. doi: 10.3934/dcds.2010.27.847.   H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J., 58 (2009), 807-821. doi: 10.1512/iumj.2009.58.3505.   M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, (). M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation, Nonlinearity, 25 (2012), 1525-1535. doi: 10.1088/0951-7715/25/5/1525.   T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system, Anal. PDE, 4 (2011), 247-284. doi: 10.2140/apde.2011.4.247.   N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161-181. doi: 10.1007/s00220-004-1256-7.   E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2 (2009), 361-366. doi: 10.2140/apde.2009.2.361.   J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305. doi: 10.1007/s00021-009-0017-y.   show all references

##### References:
  R. Askey, Radial Characteristic Functions, University of Wisconsin-Madison, Mathematics Research Center, 1262, 1973. A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.   C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst., 27 (2010), 847-861. doi: 10.3934/dcds.2010.27.847.   H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J., 58 (2009), 807-821. doi: 10.1512/iumj.2009.58.3505.   M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, (). M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation, Nonlinearity, 25 (2012), 1525-1535. doi: 10.1088/0951-7715/25/5/1525.   T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system, Anal. PDE, 4 (2011), 247-284. doi: 10.2140/apde.2011.4.247.   N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161-181. doi: 10.1007/s00220-004-1256-7.   E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2 (2009), 361-366. doi: 10.2140/apde.2009.2.361.   J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305. doi: 10.1007/s00021-009-0017-y.   Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110  Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems and Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157  Vincenzo Ambrosio, Giovanni Molica Bisci. Periodic solutions for nonlocal fractional equations. Communications on Pure and Applied Analysis, 2017, 16 (1) : 331-344. doi: 10.3934/cpaa.2017016  Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291  Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153  Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control and Related Fields, 2022, 12 (1) : 81-114. doi: 10.3934/mcrf.2021003  Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775  Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735  Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171  Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039  M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181  Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335  Martin Frank, Weiran Sun. Fractional diffusion limits of non-classical transport equations. Kinetic and Related Models, 2018, 11 (6) : 1503-1526. doi: 10.3934/krm.2018059  Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations and Control Theory, 2022, 11 (1) : 225-238. doi: 10.3934/eect.2020109  Nikolaos Roidos, Yuanzhen Shao. Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. Evolution Equations and Control Theory, 2022, 11 (3) : 793-825. doi: 10.3934/eect.2021026  Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic and Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013  Dinh-Ke Tran, Tran-Phuong-Thuy Lam. Nonlocal final value problem governed by semilinear anomalous diffusion equations. Evolution Equations and Control Theory, 2020, 9 (3) : 891-914. doi: 10.3934/eect.2020038  Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019  Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127  Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

2020 Impact Factor: 1.392