February  2014, 34(2): 367-377. doi: 10.3934/dcds.2014.34.367

Ergodicity criteria for non-expanding transformations of 2-adic spheres

1. 

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Leninskiye Gory, 1-52, Moscow, 119991, GSP-1, Russian Federation

2. 

International Center for Mathematical Modeling, Linnæus University, S-35195 Växjö, Sweden, Sweden

Received  October 2012 Revised  May 2013 Published  August 2013

In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems $\langle f;\mathbf S_{2^-r}(a)\rangle$ on 2-adic spheres $\mathbf S_{2^-r}(a)$ of radius $2^{-r}$, $r\ge 1$, centered at some point $a$ from the ultrametric space of 2-adic integers $\mathbb Z_2$. The map $f\colon\mathbb Z_2\to\mathbb Z_2$ is assumed to be non-expanding and measure-preserving; that is, $f$ satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and $f$ preserves a natural probability measure on $\mathbb Z_2$, the Haar measure $\mu_2$ on $\mathbb Z_2$ which is normalized so that $\mu_2(\mathbb Z_2)=1$.
Citation: Vladimir Anashin, Andrei Khrennikov, Ekaterina Yurova. Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 367-377. doi: 10.3934/dcds.2014.34.367
References:
[1]

S. Albeverio, A. Khrennikov and P. E. Kloeden, Memory retrieval as a p-adic dynamical system, Biosystems, 49 (1999), 105-115. doi: 10.1016/S0303-2647(98)00035-5.  Google Scholar

[2]

S. Al'beverio, A. Khrennikov, B. Tirotstsi and S. de Shmedt, $p$-adic dynamical systems, Theor. Math. Phys., 114 (1998), 276-287. doi: 10.1007/BF02575441.  Google Scholar

[3]

V. Anashin and A. Khrennikov, "Applied Algebraic Dynamics," de Gruyter Expositions in Mathematics, 49, Walter de Gruyter & Co., Berlin, 2009. doi: 10.1515/9783110203011.  Google Scholar

[4]

V. Anashin, Uniformly distributed sequences of p-adic integers, Math. Notes, 55 (1994), 109-133. doi: 10.1007/BF02113290.  Google Scholar

[5]

V. S. Anashin, Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers, J. Math. Sci., 89 (1998), 1355-1390. doi: 10.1007/BF02355442.  Google Scholar

[6]

V. Anashin, Uniformly distributed sequences of $p$-adic integers, Discrete Math. Appl., 12 (2002), 527-590.  Google Scholar

[7]

V. Anashin, Ergodic transformations in the space of $p$-adic integers, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conf. Proc., 826, American Institute of Physics, Melville, New York, (2006), 3-24. doi: 10.1063/1.2193107.  Google Scholar

[8]

V. Anashin, Non-Archimedean theory of T-functions, in "Boolean Functions in Cryptology and Information Security," NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 18, IOS, Amsterdam, (2008), 33-57. doi: 10.3233/978-1-58603-878-6-33.  Google Scholar

[9]

V. Anashin, Non-Archimedean ergodic theory and pseudorandom generators, The Computer Journal, 53 (2010), 370-392. doi: 10.1093/comjnl/bxm101.  Google Scholar

[10]

V. Anashin, Automata finiteness criterion in terms of van der Put series of automata functions, $p$-Adic Numbers Ultrametric Analysis and Applications, 4 (2012), 151-160. doi: 10.1134/S2070046612020070.  Google Scholar

[11]

V. S. Anashin, A. Yu. Khrennikov and E. I. Yurova, Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis, Doklady Mathematics, 83 (2011), 306-308. doi: 10.1134/S1064562411030100.  Google Scholar

[12]

V. Anashin, A. Khrennikov and E. Yurova, Using van der Put basis to determine if a 2-adic function is measure-preserving or ergodic w.r.t. Haar measure, in "Advances in Non-Archimedean Analysis," Contemporary Mathematics, 551, American Mathematical Society, Providence, RI, (2011), 33-38. doi: 10.1090/conm/551/10883.  Google Scholar

[13]

V. Anashin, A. Khrennikov and E. Yurova, T-functions revisited: New criteria for bijectivity/transitivity, Designes, Codes and Cryptography, (2012). doi: 10.1007/s10623-012-9741-z.  Google Scholar

[14]

D. K. Arrowsmith and F. Vivaldi, Some p-adic representations of the Smale horseshoe, Phys. Lett. A, 176 (1993), 292-294. doi: 10.1016/0375-9601(93)90920-U.  Google Scholar

[15]

D. K. Arrowsmith and F. Vivaldi, Geometry of p-adic Siegel discs, Physica D, 71 (1994), 222-236. doi: 10.1016/0167-2789(94)90191-0.  Google Scholar

[16]

R. Benedetto, $p$-adic dynamics and Sullivans no wandering domain theorem, Compos. Math., 122 (2000), 281-298. doi: 10.1023/A:1002067315057.  Google Scholar

[17]

R. Benedetto, Hyperbolic maps in $p$-adic dynamics, Ergod. Theory and Dyn. Sys., 21 (2001), 1-11. doi: 10.1017/S0143385701001043.  Google Scholar

[18]

R. Benedetto, Components and periodic points in non-Archimedean dynamics, Proc. London Math. Soc. (3), 84 (2002), 231-256. doi: 10.1112/plms/84.1.231.  Google Scholar

[19]

R. Benedetto, Heights and preperiodic points of polynomials over function fields,, Int. Math. Res. Notices, 2005 (): 3855.  doi: 10.1155/IMRN.2005.3855.  Google Scholar

[20]

J.-L. Chabert, A.-H. Fan and Y. Fares, Minimal dynamical systems on a discrete valuation domain, Discrete and Continuous Dynamical Systems, 25 (2009), 777-795. doi: 10.3934/dcds.2009.25.777.  Google Scholar

[21]

Z. Coelho and W. Parry, Ergodicity of p-adic multiplication and the distribution of Fibonacci numbers, in "Topology, Ergodic Theory, Real Algebraic Geometry," Amer. Math. Soc. Transl. Ser. 2, 202, American Mathematical Society, Providence, RI, (2001), 51-70.  Google Scholar

[22]

A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, $p$-adic affine dynamical systems and applications, C. R. Acad. Sci. Paris, 342 (2006), 129-134. doi: 10.1016/j.crma.2005.11.017.  Google Scholar

[23]

A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, Strict ergodicity of affine $p$-adic dynamical systems on $\mathbbZ_p$, Adv. Math., 214 (2007), 666-700. doi: 10.1016/j.aim.2007.03.003.  Google Scholar

[24]

A.-H. Fan, L. Liao, Y.-F. Wang and D. Zhou, $p$-adic repellers in $\mathbb Q_p$ are subshifts of finite type, C. R. Math. Acad. Sci. Paris, 344 (2007), 219-224. doi: 10.1016/j.crma.2006.12.007.  Google Scholar

[25]

C. Favre and J. Rivera-Letelier, Theorème d'equidistribution de Brolin en dynamique $p$-adique, C. R. Math. Acad. Sci. Paris, 339 (2004), 271-276. doi: 10.1016/j.crma.2004.06.023.  Google Scholar

[26]

M. Gundlach, A. Khrennikov and K.-O. Lindahl, On ergodic behaviour of $p$-adic dynamical systems, Infinite Dimensional Analysis, Quantum Prob. and Related Top., 4 (2001), 569-577. doi: 10.1142/S0219025701000632.  Google Scholar

[27]

M. Gundlach, A. Khrennikov and K.-O. Lindahl, Topological transitivity for $p$-adic dynamical systems, in "$p$-adic Functional Analysis" (Ioannina, 2000), Lecture Notes in Pure and Applied Mathematics, 222, Dekker, New York, (2001), 127-132.  Google Scholar

[28]

A. Khrennikov and M. Nilsson, "$p$-adic Deterministic and Random Dynamics," Mathematics and its Applications, 574, Kluwer Academic Publishers, Dordrecht, 2004.  Google Scholar

[29]

J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, On measure-preserving $C^1$ transformations of compact-open subsets of non-Archimedean local fields, Trans. Amer. Math. Soc., 361 (2009), 61-85. doi: 10.1090/S0002-9947-08-04686-2.  Google Scholar

[30]

J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, Dynamics of the $p$-adic shift and applications, Discrete and Continuoius Dynamical Systems, 30 (2011), 209-218. doi: 10.3934/dcds.2011.30.209.  Google Scholar

[31]

M. V. Larin, Transitive polynomial transformations of residue rings, Discrete Math. Appl., 12 (2002), 127-140.  Google Scholar

[32]

D.-D. Lin, T. Shi and Z.-F. Yang, Ergodic theory over $\mathbb F_2[[X]]$, Finite Fields Appl., 18 (2012), 473-491. doi: 10.1016/j.ffa.2011.11.001.  Google Scholar

[33]

K.-O. Lindahl, On Siegel's linearization theorem for fields of prime characteristic, Nonlinearity, 17 (2004), 745-763. doi: 10.1088/0951-7715/17/3/001.  Google Scholar

[34]

K. Mahler, "$p$-adic Numbers and their Functions," Second edition, Cambridge Tracts in Mathematics, 76, Cambridge Univ. Press, Cambridge-New York, 1981.  Google Scholar

[35]

M. van der Put, Algèbres de fonctions continues $p$-adiques. II, (French) Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30 (1968), 412-420  Google Scholar

[36]

J. Rivera-Letelier, "Dynamique des Fonctions Rationelles sur des Corps Locaux," Ph.D thesis, Orsay, 2000. Google Scholar

[37]

J. Rivera-Letelier, Dynamique des fonctions rationelles sur des corps locaux, Asterisque, 287 (2003), 147-230.  Google Scholar

[38]

J. Rivera-Letelier, Espace hyperbolique $p$-adique et dynamique des fonctions rationelles, Compos. Math., 138 (2003), 199-231. doi: 10.1023/A:1026136530383.  Google Scholar

[39]

S. De Smedt and A. Khrennikov, A $p$-adic behaviour of dynamical systems, Rev. Mat. Complut., 12 (1999), 301-323.  Google Scholar

[40]

W. H. Schikhof, "Ultrametric Calculus. An Introduction to $p$-adic Analysis," Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge, 1984.  Google Scholar

[41]

J. H. Silverman, "The Arithmetic of Dynamical Systems," Graduate Texts in Mathematics, 241, Springer, New York, 2007. doi: 10.1007/978-0-387-69904-2.  Google Scholar

[42]

F. Vivaldi, The arithmetic of discretized rotations, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conference Proceedings, 826, American Institute of Physics, Melville, New York, (2006), 162-173. doi: 10.1063/1.2193120.  Google Scholar

[43]

F. Vivaldi and I. Vladimirov, Pseudo-randomness of round-off errors in discretized linear maps on the plane, Int. J. of Bifurcations and Chaos Appl. Sci. Engrg., 13 (2003), 3373-3393. doi: 10.1142/S0218127403008557.  Google Scholar

[44]

F. Vivaldi, Algebraic and arithmetic dynamics bibliographical database., Available from: , ().   Google Scholar

[45]

E. I. Yurova, Van der Put basis and $p$-adic dynamics, $p$-Adic Numbers, Ultrametric Analysis and Applications, 2 (2010), 175-178. doi: 10.1134/S207004661002007X.  Google Scholar

show all references

References:
[1]

S. Albeverio, A. Khrennikov and P. E. Kloeden, Memory retrieval as a p-adic dynamical system, Biosystems, 49 (1999), 105-115. doi: 10.1016/S0303-2647(98)00035-5.  Google Scholar

[2]

S. Al'beverio, A. Khrennikov, B. Tirotstsi and S. de Shmedt, $p$-adic dynamical systems, Theor. Math. Phys., 114 (1998), 276-287. doi: 10.1007/BF02575441.  Google Scholar

[3]

V. Anashin and A. Khrennikov, "Applied Algebraic Dynamics," de Gruyter Expositions in Mathematics, 49, Walter de Gruyter & Co., Berlin, 2009. doi: 10.1515/9783110203011.  Google Scholar

[4]

V. Anashin, Uniformly distributed sequences of p-adic integers, Math. Notes, 55 (1994), 109-133. doi: 10.1007/BF02113290.  Google Scholar

[5]

V. S. Anashin, Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers, J. Math. Sci., 89 (1998), 1355-1390. doi: 10.1007/BF02355442.  Google Scholar

[6]

V. Anashin, Uniformly distributed sequences of $p$-adic integers, Discrete Math. Appl., 12 (2002), 527-590.  Google Scholar

[7]

V. Anashin, Ergodic transformations in the space of $p$-adic integers, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conf. Proc., 826, American Institute of Physics, Melville, New York, (2006), 3-24. doi: 10.1063/1.2193107.  Google Scholar

[8]

V. Anashin, Non-Archimedean theory of T-functions, in "Boolean Functions in Cryptology and Information Security," NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 18, IOS, Amsterdam, (2008), 33-57. doi: 10.3233/978-1-58603-878-6-33.  Google Scholar

[9]

V. Anashin, Non-Archimedean ergodic theory and pseudorandom generators, The Computer Journal, 53 (2010), 370-392. doi: 10.1093/comjnl/bxm101.  Google Scholar

[10]

V. Anashin, Automata finiteness criterion in terms of van der Put series of automata functions, $p$-Adic Numbers Ultrametric Analysis and Applications, 4 (2012), 151-160. doi: 10.1134/S2070046612020070.  Google Scholar

[11]

V. S. Anashin, A. Yu. Khrennikov and E. I. Yurova, Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis, Doklady Mathematics, 83 (2011), 306-308. doi: 10.1134/S1064562411030100.  Google Scholar

[12]

V. Anashin, A. Khrennikov and E. Yurova, Using van der Put basis to determine if a 2-adic function is measure-preserving or ergodic w.r.t. Haar measure, in "Advances in Non-Archimedean Analysis," Contemporary Mathematics, 551, American Mathematical Society, Providence, RI, (2011), 33-38. doi: 10.1090/conm/551/10883.  Google Scholar

[13]

V. Anashin, A. Khrennikov and E. Yurova, T-functions revisited: New criteria for bijectivity/transitivity, Designes, Codes and Cryptography, (2012). doi: 10.1007/s10623-012-9741-z.  Google Scholar

[14]

D. K. Arrowsmith and F. Vivaldi, Some p-adic representations of the Smale horseshoe, Phys. Lett. A, 176 (1993), 292-294. doi: 10.1016/0375-9601(93)90920-U.  Google Scholar

[15]

D. K. Arrowsmith and F. Vivaldi, Geometry of p-adic Siegel discs, Physica D, 71 (1994), 222-236. doi: 10.1016/0167-2789(94)90191-0.  Google Scholar

[16]

R. Benedetto, $p$-adic dynamics and Sullivans no wandering domain theorem, Compos. Math., 122 (2000), 281-298. doi: 10.1023/A:1002067315057.  Google Scholar

[17]

R. Benedetto, Hyperbolic maps in $p$-adic dynamics, Ergod. Theory and Dyn. Sys., 21 (2001), 1-11. doi: 10.1017/S0143385701001043.  Google Scholar

[18]

R. Benedetto, Components and periodic points in non-Archimedean dynamics, Proc. London Math. Soc. (3), 84 (2002), 231-256. doi: 10.1112/plms/84.1.231.  Google Scholar

[19]

R. Benedetto, Heights and preperiodic points of polynomials over function fields,, Int. Math. Res. Notices, 2005 (): 3855.  doi: 10.1155/IMRN.2005.3855.  Google Scholar

[20]

J.-L. Chabert, A.-H. Fan and Y. Fares, Minimal dynamical systems on a discrete valuation domain, Discrete and Continuous Dynamical Systems, 25 (2009), 777-795. doi: 10.3934/dcds.2009.25.777.  Google Scholar

[21]

Z. Coelho and W. Parry, Ergodicity of p-adic multiplication and the distribution of Fibonacci numbers, in "Topology, Ergodic Theory, Real Algebraic Geometry," Amer. Math. Soc. Transl. Ser. 2, 202, American Mathematical Society, Providence, RI, (2001), 51-70.  Google Scholar

[22]

A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, $p$-adic affine dynamical systems and applications, C. R. Acad. Sci. Paris, 342 (2006), 129-134. doi: 10.1016/j.crma.2005.11.017.  Google Scholar

[23]

A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, Strict ergodicity of affine $p$-adic dynamical systems on $\mathbbZ_p$, Adv. Math., 214 (2007), 666-700. doi: 10.1016/j.aim.2007.03.003.  Google Scholar

[24]

A.-H. Fan, L. Liao, Y.-F. Wang and D. Zhou, $p$-adic repellers in $\mathbb Q_p$ are subshifts of finite type, C. R. Math. Acad. Sci. Paris, 344 (2007), 219-224. doi: 10.1016/j.crma.2006.12.007.  Google Scholar

[25]

C. Favre and J. Rivera-Letelier, Theorème d'equidistribution de Brolin en dynamique $p$-adique, C. R. Math. Acad. Sci. Paris, 339 (2004), 271-276. doi: 10.1016/j.crma.2004.06.023.  Google Scholar

[26]

M. Gundlach, A. Khrennikov and K.-O. Lindahl, On ergodic behaviour of $p$-adic dynamical systems, Infinite Dimensional Analysis, Quantum Prob. and Related Top., 4 (2001), 569-577. doi: 10.1142/S0219025701000632.  Google Scholar

[27]

M. Gundlach, A. Khrennikov and K.-O. Lindahl, Topological transitivity for $p$-adic dynamical systems, in "$p$-adic Functional Analysis" (Ioannina, 2000), Lecture Notes in Pure and Applied Mathematics, 222, Dekker, New York, (2001), 127-132.  Google Scholar

[28]

A. Khrennikov and M. Nilsson, "$p$-adic Deterministic and Random Dynamics," Mathematics and its Applications, 574, Kluwer Academic Publishers, Dordrecht, 2004.  Google Scholar

[29]

J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, On measure-preserving $C^1$ transformations of compact-open subsets of non-Archimedean local fields, Trans. Amer. Math. Soc., 361 (2009), 61-85. doi: 10.1090/S0002-9947-08-04686-2.  Google Scholar

[30]

J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, Dynamics of the $p$-adic shift and applications, Discrete and Continuoius Dynamical Systems, 30 (2011), 209-218. doi: 10.3934/dcds.2011.30.209.  Google Scholar

[31]

M. V. Larin, Transitive polynomial transformations of residue rings, Discrete Math. Appl., 12 (2002), 127-140.  Google Scholar

[32]

D.-D. Lin, T. Shi and Z.-F. Yang, Ergodic theory over $\mathbb F_2[[X]]$, Finite Fields Appl., 18 (2012), 473-491. doi: 10.1016/j.ffa.2011.11.001.  Google Scholar

[33]

K.-O. Lindahl, On Siegel's linearization theorem for fields of prime characteristic, Nonlinearity, 17 (2004), 745-763. doi: 10.1088/0951-7715/17/3/001.  Google Scholar

[34]

K. Mahler, "$p$-adic Numbers and their Functions," Second edition, Cambridge Tracts in Mathematics, 76, Cambridge Univ. Press, Cambridge-New York, 1981.  Google Scholar

[35]

M. van der Put, Algèbres de fonctions continues $p$-adiques. II, (French) Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30 (1968), 412-420  Google Scholar

[36]

J. Rivera-Letelier, "Dynamique des Fonctions Rationelles sur des Corps Locaux," Ph.D thesis, Orsay, 2000. Google Scholar

[37]

J. Rivera-Letelier, Dynamique des fonctions rationelles sur des corps locaux, Asterisque, 287 (2003), 147-230.  Google Scholar

[38]

J. Rivera-Letelier, Espace hyperbolique $p$-adique et dynamique des fonctions rationelles, Compos. Math., 138 (2003), 199-231. doi: 10.1023/A:1026136530383.  Google Scholar

[39]

S. De Smedt and A. Khrennikov, A $p$-adic behaviour of dynamical systems, Rev. Mat. Complut., 12 (1999), 301-323.  Google Scholar

[40]

W. H. Schikhof, "Ultrametric Calculus. An Introduction to $p$-adic Analysis," Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge, 1984.  Google Scholar

[41]

J. H. Silverman, "The Arithmetic of Dynamical Systems," Graduate Texts in Mathematics, 241, Springer, New York, 2007. doi: 10.1007/978-0-387-69904-2.  Google Scholar

[42]

F. Vivaldi, The arithmetic of discretized rotations, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conference Proceedings, 826, American Institute of Physics, Melville, New York, (2006), 162-173. doi: 10.1063/1.2193120.  Google Scholar

[43]

F. Vivaldi and I. Vladimirov, Pseudo-randomness of round-off errors in discretized linear maps on the plane, Int. J. of Bifurcations and Chaos Appl. Sci. Engrg., 13 (2003), 3373-3393. doi: 10.1142/S0218127403008557.  Google Scholar

[44]

F. Vivaldi, Algebraic and arithmetic dynamics bibliographical database., Available from: , ().   Google Scholar

[45]

E. I. Yurova, Van der Put basis and $p$-adic dynamics, $p$-Adic Numbers, Ultrametric Analysis and Applications, 2 (2010), 175-178. doi: 10.1134/S207004661002007X.  Google Scholar

[1]

Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks & Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405

[2]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

[3]

Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011

[4]

James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209

[5]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[6]

Sarah Bailey Frick. Limited scope adic transformations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 269-285. doi: 10.3934/dcdss.2009.2.269

[7]

Sangtae Jeong, Chunlan Li. Measure-preservation criteria for a certain class of 1-lipschitz functions on Zp in mahler's expansion. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3787-3804. doi: 10.3934/dcds.2017160

[8]

Ilwoo Cho. Certain $*$-homomorphisms acting on unital $C^{*}$-probability spaces and semicircular elements induced by $p$-adic number fields over primes $p$. Electronic Research Archive, 2020, 28 (2) : 739-776. doi: 10.3934/era.2020038

[9]

Andrew Klapper. The asymptotic behavior of N-adic complexity. Advances in Mathematics of Communications, 2007, 1 (3) : 307-319. doi: 10.3934/amc.2007.1.307

[10]

Wacław Marzantowicz, Piotr Maciej Przygodzki. Finding periodic points of a map by use of a k-adic expansion. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 495-514. doi: 10.3934/dcds.1999.5.495

[11]

Bojing Shi. $ W^{1, p} $ estimates for elliptic problems with drift terms in Lipschitz domains. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021127

[12]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[13]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[14]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

[15]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[16]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[17]

Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171

[18]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure & Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[19]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[20]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (3)

[Back to Top]