-
Previous Article
Modulation of uniform motion in diatomic Frenkel-Kontorova model
- DCDS Home
- This Issue
-
Next Article
Memory loss for nonequilibrium open dynamical systems
Shadowing near nonhyperbolic fixed points
1. | Faculty of Mathematics and Mechanics St. Petersburg State University, University av., 28, 198504, St. Petersburg, Russian Federation |
2. | Faculty of Mathematics and Mechanics, St. Petersburg State University, University av. 28, 198504, St. Petersburg, Russian Federation |
References:
[1] |
S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. |
[2] |
K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Mathematics and its Applications, 501. Kluwer Academic Publishers, Dordrecht, 2000. |
[3] |
S. Y. Pilyugin, Theory of pseudo-orbit shadowing in dynamical systems, Differential Equations, 47 (2011), 1929-1938.
doi: 10.1134/S0012266111130040. |
[4] |
S. M. Hammel, J. A. Yorke and C. Grebogi, Numerical orbits of chaotic dynamical processes represent true orbits, Bull. Amer. Math. Soc., 19 (1988), 465-469.
doi: 10.1090/S0273-0979-1988-15701-1. |
[5] |
J. Kennedy, James A. Yorke, Shadowing in higher dimensions, Progress in Nonlinear Differential Equations and Their Applications Volume, 75 (2008), 241-246.
doi: 10.1007/978-3-7643-8482-1_19. |
[6] |
J. Lewowicz, Lyapunov functions and topological stability, J. Differential Equations, 38 (1980), 192-209.
doi: 10.1016/0022-0396(80)90004-2. |
[7] |
A. A. Petrov and S. Y. Pilyugin, Lyapunov functions, shadowing, and topological stability, Topol. Methods Nonlin. Anal. (2014). |
[8] |
S. Tikhomirov, Holder Shadowing on Finite Intervals,, , ().
|
show all references
References:
[1] |
S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. |
[2] |
K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Mathematics and its Applications, 501. Kluwer Academic Publishers, Dordrecht, 2000. |
[3] |
S. Y. Pilyugin, Theory of pseudo-orbit shadowing in dynamical systems, Differential Equations, 47 (2011), 1929-1938.
doi: 10.1134/S0012266111130040. |
[4] |
S. M. Hammel, J. A. Yorke and C. Grebogi, Numerical orbits of chaotic dynamical processes represent true orbits, Bull. Amer. Math. Soc., 19 (1988), 465-469.
doi: 10.1090/S0273-0979-1988-15701-1. |
[5] |
J. Kennedy, James A. Yorke, Shadowing in higher dimensions, Progress in Nonlinear Differential Equations and Their Applications Volume, 75 (2008), 241-246.
doi: 10.1007/978-3-7643-8482-1_19. |
[6] |
J. Lewowicz, Lyapunov functions and topological stability, J. Differential Equations, 38 (1980), 192-209.
doi: 10.1016/0022-0396(80)90004-2. |
[7] |
A. A. Petrov and S. Y. Pilyugin, Lyapunov functions, shadowing, and topological stability, Topol. Methods Nonlin. Anal. (2014). |
[8] |
S. Tikhomirov, Holder Shadowing on Finite Intervals,, , ().
|
[1] |
Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 |
[2] |
Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021210 |
[3] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[4] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022045 |
[5] |
Jonathan Meddaugh. Shadowing as a structural property of the space of dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2439-2451. doi: 10.3934/dcds.2021197 |
[6] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[7] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[8] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[9] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[10] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[11] |
Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 |
[12] |
Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115 |
[13] |
Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467 |
[14] |
Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621 |
[15] |
Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure and Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 |
[16] |
Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248 |
[17] |
Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273 |
[18] |
Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024 |
[19] |
Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial and Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487 |
[20] |
Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]