\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Viscous Aubry-Mather theory and the Vlasov equation

Abstract Related Papers Cited by
  • The Vlasov equation models a group of particles moving under a potential $V$; moreover, each particle exerts a force, of potential $W$, on the other ones. We shall suppose that these particles move on the $p$-dimensional torus $T^p$ and that the interaction potential $W$ is smooth. We are going to perturb this equation by a Brownian motion on $T^p$; adapting to the viscous case methods of Gangbo, Nguyen, Tudorascu and Gomes, we study the existence of periodic solutions and the asymptotics of the Hopf-Lax semigroup.
    Mathematics Subject Classification: Primary: 70H20; Secondary: 35Q83.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, Lecture notes on optimal transport problems, in "Mathematical Aspects of Evolving Interfaces" (Funchal, 2000), Lecture Notes in Math., 1812, Springer, Berlin, (2003), 1-52.doi: 10.1007/978-3-540-39189-0_1.

    [2]

    N. Anantharaman, On the zero-temperature vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics, J. Eur. Math. Soc. (JEMS), 6 (2004), 207-276.

    [3]

    G. Birkhoff, "Lattice Theory," Third edition, AMS Colloquium Publ., Vol. XXV, AMS, Providence, R. I., 1967.

    [4]

    P. Cardialiaguet, "Notes on Mean Field Games," from P.-L. Lions' lectures at the Collège de France, mimeographed notes.

    [5]

    E. Carlen, "Lectures on Optimal Mass Transportation and Certain of its Applications," mimeographed notes, 2009.

    [6]

    G. Da Prato, "Introduction to Stochastic Analysis and Malliavin Calculus," Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 6, Edizioni della Normale, Pisa, 2007.

    [7]

    R. L. Dobrušin, Vlasov equations, Functional Analysis and its Applications, 13 (1979), 45-58.

    [8]

    A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics," Fourth preliminary version, mimeographed notes, Lyon, 2003.

    [9]

    W. H. Fleming, The Cauchy problem for a nonlinear first order PDE, Journal of Differential Equations, 5 (1969), 515-530.doi: 10.1016/0022-0396(69)90091-6.

    [10]

    A. Friedman, "Partial Differential Equations of Parabolic Type," Dover, New York, 1992.

    [11]

    W. Gangbo and A. Tudorascu, Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem, Adv. Math., 224 (2010), 260-292.doi: 10.1016/j.aim.2009.11.005.

    [12]

    W. Gangbo, T. Nguyen and A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space, Methods Appl. Anal., 15 (2008), 155-183.

    [13]

    D. Gomes, A stochastic analog of Aubry-Mather theory, Nonlinearity, 15 (2002), 581-603.doi: 10.1088/0951-7715/15/3/304.

    [14]

    T. Hida, "Brownian Motion," Applications of Mathematics, 11, Springer-Verlag, New York-Berlin, 1980.

    [15]

    J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.doi: 10.5802/aif.1377.

    [16]

    M. Viana, "Stochastic Dynamics of Deterministic Systems," mimeographed notes, 2000.

    [17]

    C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.doi: 10.1007/b12016.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(39) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return