Citation: |
[1] |
M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069-1075.doi: 10.1016/S0893-9659(03)90096-6. |
[2] |
R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons Ltd., Chichester, 2003.doi: 10.1002/0470871296. |
[3] |
A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential Integral Equations, 7 (1994), 411-439. |
[4] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2. |
[5] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. |
[6] |
E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.doi: 10.1016/0022-247X(83)90098-7. |
[7] |
E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.doi: 10.1090/S0002-9947-1984-0743741-4. |
[8] |
E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumpting nonlinearities, J. Differential Equaitons, 114 (1994), 434-475.doi: 10.1006/jdeq.1994.1156. |
[9] |
Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey mmodel, Trans. Amer. Math. Soc., 349 (1997), 2443-2475.doi: 10.1090/S0002-9947-97-01842-4. |
[10] |
Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equaitons, 144 (1998), 390-440.doi: 10.1006/jdeq.1997.3394. |
[11] |
Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equaitons, 246 (2009), 3932-3956.doi: 10.1016/j.jde.2008.11.007. |
[12] |
Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, In Nonlinear dynamics and evolution equations, volume 48 of Fields Inst. Commun., pages 95-135. Amer. Math. Soc., Providence, RI, 2006. |
[13] |
Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equaitons, 229 (2006), 63-91.doi: 10.1016/j.jde.2006.01.013. |
[14] |
B. Dubey, B. Das and J. Hussain, A predator-prey interaction model with self and cross-diffusion, Ecological Modelling, 141 (2001), 67-76.doi: 10.1016/S0304-3800(01)00255-1. |
[15] |
C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model, Comm. Pure Appl. Math., 47 (1994), 1571-1594.doi: 10.1002/cpa.3160471203. |
[16] |
C. S. Holling, Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91 (1959), 382-384.doi: 10.4039/Ent91385-7. |
[17] |
Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536. |
[18] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. |
[19] |
K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 293-314.doi: 10.1016/j.jde.2003.10.016. |
[20] |
K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 10 (2009), 943-965.doi: 10.1016/j.nonrwa.2007.11.015. |
[21] |
K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.doi: 10.1016/j.jde.2003.08.003. |
[22] |
K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 89 (2010), 1037-1066.doi: 10.1080/00036811003627534. |
[23] |
P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234. |
[24] |
A. W. Leung, Nonlinear Systems of Partial Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. Applications to life and physical sciences.doi: 10.1142/9789814277709. |
[25] |
L. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc., 305 (1988), 143-166.doi: 10.1090/S0002-9947-1988-0920151-1. |
[26] |
Z. Lin and M. Pedersen, Coexistence of a general elliptic system in population dynamics, Comput. Math. Appl., 48 (2004), 617-628.doi: 10.1016/j.camwa.2003.01.016. |
[27] |
J. López-Gómez, Positive periodic solutions of Lotka-Volterra reaction-diffusion systems, Differential Integral Equations, 5 (1992), 55-72. |
[28] |
J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case, Differential Integral Equations, 6 (1993), 1025-1031. |
[29] |
Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.doi: 10.1006/jdeq.1996.0157. |
[30] |
Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999), 157-190.doi: 10.1006/jdeq.1998.3559. |
[31] |
M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11 (1981), 621-635. |
[32] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.doi: 10.1007/BF00276035. |
[33] |
K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion, Adv. Differential Equations, 1 (1996), 1099-1122. |
[34] |
C. Neuhauser, Mathematical challenges in spatial ecology, Notices Amer. Math. Soc., 48 (2001), 1304-1314. |
[35] |
K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.doi: 10.1016/j.jde.2011.01.026. |
[36] |
A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer-Verlag, New York, second edition, 2001. volume 14 of Interdisciplinary Applied Mathematics. |
[37] |
C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Anal., 60 (2005), 1197-1217.doi: 10.1016/j.na.2004.10.008. |
[38] |
P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.doi: 10.1016/0022-1236(71)90030-9. |
[39] |
W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl., 197 (1996), 558-578.doi: 10.1006/jmaa.1996.0039. |
[40] |
K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures, Bull. Korean Math. Soc., 38 (2001), 643-655. |
[41] |
K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics, J. Math. Anal. Appl., 283 (2003), 46-65.doi: 10.1016/S0022-247X(03)00162-8. |
[42] |
K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061.doi: 10.3934/dcds.2003.9.1049. |
[43] |
J. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.doi: 10.1006/jfan.1999.3483. |
[44] |
J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.doi: 10.1016/j.jde.2008.09.009. |
[45] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.doi: 10.1016/0022-5193(79)90258-3. |
[46] |
Y. Yamada, Positive solutions for Lotka-Volterra systems with cross-diffusion, In Handbook of differential equations: stationary partial differential equations. Vol. VI, Handb. Differ. Equ., pages 411-501. Elsevier/North-Holland, Amsterdam, 2008.doi: 10.1016/S1874-5733(08)80023-X. |
[47] |
C.-H. Zhang and X. P. Yan, Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 342-352.doi: 10.1007/s11766-011-2737-z. |
[48] |
J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes, J. Math. Anal. Appl., 389 (2012), 1380-1393.doi: 10.1016/j.jmaa.2012.01.013. |
[49] |
J. Zhou and J. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses, J. Math. Anal. Appl., 405 (2013), 618-630.doi: 10.1016/j.jmaa.2013.03.064. |