-
Previous Article
The behavior of a beam fixed on small sets of one of its extremities
- DCDS Home
- This Issue
-
Next Article
Analysis and optimal control of some solidification processes
Asymptotic behaviour of a logistic lattice system
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla |
2. | Department d'Economia Aplicada, Facultat d'Economia, Universitat de València, Campus del Tarongers s/n, 46022-València |
3. | Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202 Elche |
References:
[1] |
V. S. Afraimovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps, Internat. J. Bifur. Chaos, 4 (1994), 631-637.
doi: 10.1142/S0218127494000459. |
[2] |
J. M. Amigó, A. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-newtonian fluids modelling suspensions, Internat. J. Bifur. Chaos, 20 (2010), 2681-2700.
doi: 10.1142/S0218127410027295. |
[3] |
P. W. Bates and A. Chmaj, On a discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.
doi: 10.1007/s002050050189. |
[4] |
P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics & Dynamics, 6 (2006), 1-21.
doi: 10.1142/S0219493706001621. |
[5] |
P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos, 11 (2001), 143-153.
doi: 10.1142/S0218127401002031. |
[6] |
J. Bell, Some threshhold results for models of myelinated nerves, Mathematical Biosciences, 54 (1981), 181-190.
doi: 10.1016/0025-5564(81)90085-7. |
[7] |
J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly Appl.Math., 42 (1984), 1-14. |
[8] |
W. J. Beyn and S. Yu. Pilyugin, Attractors of Reaction Diffusion Systems on Infinite Lattices, J. Dynam. Differential Equations, 15 (2003), 485-515.
doi: 10.1023/B:JODY.0000009745.41889.30. |
[9] |
T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[10] |
T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Equat. App., 17 (2011), 161-184.
doi: 10.1080/10236198.2010.549010. |
[11] |
T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.
doi: 10.1016/j.jde.2012.03.020. |
[12] |
S.-N. Chow and J. Mallet-Paret, Pattern formulation and spatial chaos in lattice dynamical systems: I, IEEE Trans. Circuits Syst., 42 (1995), 746-751.
doi: 10.1109/81.473583. |
[13] |
S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations., 149 (1998), 248-291.
doi: 10.1006/jdeq.1998.3478. |
[14] |
S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Computational Dynamics, 4 (1996), 109-178. |
[15] |
S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764-1781.
doi: 10.1137/S0036139994261757. |
[16] |
L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), 147-156.
doi: 10.1109/81.222795. |
[17] |
L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257-1272.
doi: 10.1109/31.7600. |
[18] |
L. O. Chua and L. Yang, Cellular neural neetworks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273-1290.
doi: 10.1109/31.7601. |
[19] |
R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation, Internat. J. Bifur. Chaos, 8 (1988), 211-257.
doi: 10.1142/S0218127498000152. |
[20] |
T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67 (1993), 237-244.
doi: 10.1016/0167-2789(93)90208-I. |
[21] |
M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14.
doi: 10.1006/jdeq.1996.3166. |
[22] |
X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493.
doi: 10.1016/j.jmaa.2010.11.032. |
[23] |
X. Han, W. Shen and Sh. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[24] |
R. Kapval, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.
doi: 10.1007/BF01192578. |
[25] |
J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.
doi: 10.1137/0147038. |
[26] |
J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.
doi: 10.1016/S0022-5193(05)80465-5. |
[27] |
O. A. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups (in russian), Zap. Nauchn. Sem. LOMI, 182 (1990), 102-112; English translation in J. Soviet Math., 62 (1992), 1789-1794.
doi: 10.1007/BF01671002. |
[28] |
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511569418. |
[29] |
J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors, J. Phys. Chem., 96 (1992), 4931-4934.
doi: 10.1021/j100191a038. |
[30] |
J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999), 49-127.
doi: 10.1023/A:1021841618074. |
[31] |
F. Morillas and J. Valero, A Peano's theorem and attractors for lattice dynamical systems, Internat. J. Bifur. Chaos, 19 (2009), 557-578.
doi: 10.1142/S0218127409023196. |
[32] |
F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems, J. Diff. Equat. App., 18 (2012), 675-692.
doi: 10.1080/10236198.2011.574621. |
[33] |
A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-d array of nonlinear circuits, IEEE Trans. Circuits Syst., 40 (1993), 872-877. |
[34] |
N. Rashevsky, Mathematical Biophysics, 3rd revised edition, Dover Publications, Inc., New York, 1960. |
[35] |
A. C. Scott, Analysis of a myelinated nerve model, Bull. Math. Biophys., 26 (1964), 247-254.
doi: 10.1007/BF02479046. |
[36] |
W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices, SIAM J. Appl. Math., 56 (1996), 1379-1399.
doi: 10.1137/S0036139995282670. |
[37] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. |
[38] |
B. Wang, Dynamics of systems of infinite lattices, J. Differential Equations, 221 (2006), 224-245.
doi: 10.1016/j.jde.2005.01.003. |
[39] |
B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.
doi: 10.1016/j.jmaa.2006.08.070. |
[40] |
E. Zeidler, Nonlinear Functional Analysis and Its Applciations, Springer, New-York, 1986.
doi: 10.1007/978-1-4612-4838-5. |
[41] |
B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27.
doi: 10.1016/0022-0396(92)90142-A. |
[42] |
S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.
doi: 10.1016/S0167-2789(02)00807-2. |
[43] |
S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.
doi: 10.1016/j.jde.2004.02.005. |
[44] |
S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.
doi: 10.1016/j.jde.2005.06.024. |
show all references
References:
[1] |
V. S. Afraimovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps, Internat. J. Bifur. Chaos, 4 (1994), 631-637.
doi: 10.1142/S0218127494000459. |
[2] |
J. M. Amigó, A. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-newtonian fluids modelling suspensions, Internat. J. Bifur. Chaos, 20 (2010), 2681-2700.
doi: 10.1142/S0218127410027295. |
[3] |
P. W. Bates and A. Chmaj, On a discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.
doi: 10.1007/s002050050189. |
[4] |
P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics & Dynamics, 6 (2006), 1-21.
doi: 10.1142/S0219493706001621. |
[5] |
P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos, 11 (2001), 143-153.
doi: 10.1142/S0218127401002031. |
[6] |
J. Bell, Some threshhold results for models of myelinated nerves, Mathematical Biosciences, 54 (1981), 181-190.
doi: 10.1016/0025-5564(81)90085-7. |
[7] |
J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly Appl.Math., 42 (1984), 1-14. |
[8] |
W. J. Beyn and S. Yu. Pilyugin, Attractors of Reaction Diffusion Systems on Infinite Lattices, J. Dynam. Differential Equations, 15 (2003), 485-515.
doi: 10.1023/B:JODY.0000009745.41889.30. |
[9] |
T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[10] |
T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Equat. App., 17 (2011), 161-184.
doi: 10.1080/10236198.2010.549010. |
[11] |
T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.
doi: 10.1016/j.jde.2012.03.020. |
[12] |
S.-N. Chow and J. Mallet-Paret, Pattern formulation and spatial chaos in lattice dynamical systems: I, IEEE Trans. Circuits Syst., 42 (1995), 746-751.
doi: 10.1109/81.473583. |
[13] |
S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations., 149 (1998), 248-291.
doi: 10.1006/jdeq.1998.3478. |
[14] |
S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Computational Dynamics, 4 (1996), 109-178. |
[15] |
S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764-1781.
doi: 10.1137/S0036139994261757. |
[16] |
L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), 147-156.
doi: 10.1109/81.222795. |
[17] |
L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257-1272.
doi: 10.1109/31.7600. |
[18] |
L. O. Chua and L. Yang, Cellular neural neetworks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273-1290.
doi: 10.1109/31.7601. |
[19] |
R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation, Internat. J. Bifur. Chaos, 8 (1988), 211-257.
doi: 10.1142/S0218127498000152. |
[20] |
T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67 (1993), 237-244.
doi: 10.1016/0167-2789(93)90208-I. |
[21] |
M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14.
doi: 10.1006/jdeq.1996.3166. |
[22] |
X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493.
doi: 10.1016/j.jmaa.2010.11.032. |
[23] |
X. Han, W. Shen and Sh. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[24] |
R. Kapval, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.
doi: 10.1007/BF01192578. |
[25] |
J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.
doi: 10.1137/0147038. |
[26] |
J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.
doi: 10.1016/S0022-5193(05)80465-5. |
[27] |
O. A. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups (in russian), Zap. Nauchn. Sem. LOMI, 182 (1990), 102-112; English translation in J. Soviet Math., 62 (1992), 1789-1794.
doi: 10.1007/BF01671002. |
[28] |
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511569418. |
[29] |
J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors, J. Phys. Chem., 96 (1992), 4931-4934.
doi: 10.1021/j100191a038. |
[30] |
J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999), 49-127.
doi: 10.1023/A:1021841618074. |
[31] |
F. Morillas and J. Valero, A Peano's theorem and attractors for lattice dynamical systems, Internat. J. Bifur. Chaos, 19 (2009), 557-578.
doi: 10.1142/S0218127409023196. |
[32] |
F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems, J. Diff. Equat. App., 18 (2012), 675-692.
doi: 10.1080/10236198.2011.574621. |
[33] |
A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-d array of nonlinear circuits, IEEE Trans. Circuits Syst., 40 (1993), 872-877. |
[34] |
N. Rashevsky, Mathematical Biophysics, 3rd revised edition, Dover Publications, Inc., New York, 1960. |
[35] |
A. C. Scott, Analysis of a myelinated nerve model, Bull. Math. Biophys., 26 (1964), 247-254.
doi: 10.1007/BF02479046. |
[36] |
W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices, SIAM J. Appl. Math., 56 (1996), 1379-1399.
doi: 10.1137/S0036139995282670. |
[37] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. |
[38] |
B. Wang, Dynamics of systems of infinite lattices, J. Differential Equations, 221 (2006), 224-245.
doi: 10.1016/j.jde.2005.01.003. |
[39] |
B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.
doi: 10.1016/j.jmaa.2006.08.070. |
[40] |
E. Zeidler, Nonlinear Functional Analysis and Its Applciations, Springer, New-York, 1986.
doi: 10.1007/978-1-4612-4838-5. |
[41] |
B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27.
doi: 10.1016/0022-0396(92)90142-A. |
[42] |
S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.
doi: 10.1016/S0167-2789(02)00807-2. |
[43] |
S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.
doi: 10.1016/j.jde.2004.02.005. |
[44] |
S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.
doi: 10.1016/j.jde.2005.06.024. |
[1] |
Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281 |
[2] |
Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51 |
[3] |
Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215 |
[4] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[5] |
Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717 |
[6] |
Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541 |
[7] |
Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899 |
[8] |
Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 |
[9] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 |
[10] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[11] |
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 |
[12] |
Hiroaki Morimoto. Optimal harvesting and planting control in stochastic logistic population models. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2545-2559. doi: 10.3934/dcdsb.2012.17.2545 |
[13] |
Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803 |
[14] |
Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445 |
[15] |
Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216 |
[16] |
Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417 |
[17] |
Zhanyuan Hou. Geometric method for global stability of discrete population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3305-3334. doi: 10.3934/dcdsb.2020063 |
[18] |
Robert Hesse, Alexandra Neamţu. Global solutions and random dynamical systems for rough evolution equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2723-2748. doi: 10.3934/dcdsb.2020029 |
[19] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
[20] |
Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]