-
Previous Article
Biodiversity and vulnerability in a 3D mutualistic system
- DCDS Home
- This Issue
-
Next Article
The transition point in the zero noise limit for a 1D Peano example
Attractors for a double time-delayed 2D-Navier-Stokes model
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla |
2. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla |
3. | Departamento de Matemática, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil |
References:
[1] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.
doi: 10.1007/s003329900037. |
[2] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[3] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
doi: 10.1016/j.crma.2005.12.015. |
[4] |
T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436. |
[5] |
T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[6] |
T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166. |
[7] |
T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[8] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356.
doi: 10.1016/j.jde.2012.01.010. |
[9] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357. |
[10] |
J. García-Luengo, P. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays,, to appear in Commun. Pure Appl. Anal., ().
|
[11] |
M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.
doi: 10.1016/j.na.2005.05.057. |
[12] |
S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225-238.
doi: 10.3934/dcdsb.2011.16.225. |
[13] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero, Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes system, J. Math. Anal. Appl., 373 (2011), 535-547.
doi: 10.1016/j.jmaa.2010.07.040. |
[14] |
A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.
doi: 10.1016/j.jde.2007.06.008. |
[15] |
P. E. Kloeden, T. Caraballo, J. A. Langa, J. Real and J. Valero, The three-dimensional globally modified Navier-Stokes equations, in Advances in Nonlinear Analysis: Theory Methods and Applications, Math. Probl. Eng. Aerosp. Sci., 3, Cambridge Scientific Publishers, Cambridge, 2009, 11-22. |
[16] |
P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802.
doi: 10.3934/cpaa.2009.8.785. |
[17] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. |
[18] |
W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 47-56.
doi: 10.3934/dcdsb.2002.2.47. |
[19] |
A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation, IEEE Trans. Automat. Control, 29 (1984), 1058-1068.
doi: 10.1109/TAC.1984.1103436. |
[20] |
P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927. |
[21] |
P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.
doi: 10.1016/j.na.2006.09.035. |
[22] |
P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.
doi: 10.1016/j.na.2009.02.065. |
[23] |
P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.
doi: 10.3934/dcds.2010.26.989. |
[24] |
P. Marín-Rubio and J. Robinson, Attractors for the stochastic 3D Navier-Stokes equations, Stoch. Dyn., 3 (2003), 279-297.
doi: 10.1142/S0219493703000772. |
[25] |
G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Discrete Contin. Dyn. Syst., 21 (2008), 1245-1258.
doi: 10.3934/dcds.2008.21.1245. |
[26] |
M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity, J. Differential Equations, 48 (1983), 280-292.
doi: 10.1016/0022-0396(83)90053-0. |
[27] |
M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427. |
[28] |
T. Taniguchi, The exponencial behavior of Navier-Stokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005), 997-1018.
doi: 10.3934/dcds.2005.12.997. |
[29] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
show all references
References:
[1] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.
doi: 10.1007/s003329900037. |
[2] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[3] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
doi: 10.1016/j.crma.2005.12.015. |
[4] |
T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436. |
[5] |
T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[6] |
T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166. |
[7] |
T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[8] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356.
doi: 10.1016/j.jde.2012.01.010. |
[9] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357. |
[10] |
J. García-Luengo, P. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays,, to appear in Commun. Pure Appl. Anal., ().
|
[11] |
M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.
doi: 10.1016/j.na.2005.05.057. |
[12] |
S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225-238.
doi: 10.3934/dcdsb.2011.16.225. |
[13] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero, Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes system, J. Math. Anal. Appl., 373 (2011), 535-547.
doi: 10.1016/j.jmaa.2010.07.040. |
[14] |
A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.
doi: 10.1016/j.jde.2007.06.008. |
[15] |
P. E. Kloeden, T. Caraballo, J. A. Langa, J. Real and J. Valero, The three-dimensional globally modified Navier-Stokes equations, in Advances in Nonlinear Analysis: Theory Methods and Applications, Math. Probl. Eng. Aerosp. Sci., 3, Cambridge Scientific Publishers, Cambridge, 2009, 11-22. |
[16] |
P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802.
doi: 10.3934/cpaa.2009.8.785. |
[17] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. |
[18] |
W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 47-56.
doi: 10.3934/dcdsb.2002.2.47. |
[19] |
A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation, IEEE Trans. Automat. Control, 29 (1984), 1058-1068.
doi: 10.1109/TAC.1984.1103436. |
[20] |
P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927. |
[21] |
P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.
doi: 10.1016/j.na.2006.09.035. |
[22] |
P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.
doi: 10.1016/j.na.2009.02.065. |
[23] |
P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.
doi: 10.3934/dcds.2010.26.989. |
[24] |
P. Marín-Rubio and J. Robinson, Attractors for the stochastic 3D Navier-Stokes equations, Stoch. Dyn., 3 (2003), 279-297.
doi: 10.1142/S0219493703000772. |
[25] |
G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Discrete Contin. Dyn. Syst., 21 (2008), 1245-1258.
doi: 10.3934/dcds.2008.21.1245. |
[26] |
M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity, J. Differential Equations, 48 (1983), 280-292.
doi: 10.1016/0022-0396(83)90053-0. |
[27] |
M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427. |
[28] |
T. Taniguchi, The exponencial behavior of Navier-Stokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005), 997-1018.
doi: 10.3934/dcds.2005.12.997. |
[29] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[1] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[2] |
Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172 |
[3] |
Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779 |
[4] |
Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203 |
[5] |
Hongyong Cui, Mirelson M. Freitas, José A. Langa. Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1297-1324. doi: 10.3934/dcdsb.2018152 |
[6] |
Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181 |
[7] |
Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158 |
[8] |
Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603 |
[9] |
P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure and Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937 |
[10] |
Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643 |
[11] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[12] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[13] |
Fuzhi Li, Dongmei Xu. Asymptotically autonomous dynamics for non-autonomous stochastic $ g $-Navier-Stokes equation with additive noise. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022087 |
[14] |
Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239 |
[15] |
Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517 |
[16] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[17] |
Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143 |
[18] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[19] |
Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 |
[20] |
Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]