-
Previous Article
The Kalman-Bucy filter revisited
- DCDS Home
- This Issue
-
Next Article
Biodiversity and vulnerability in a 3D mutualistic system
Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tarfia s/n, 41012-Seville, Spain |
2. | Departamento de Matemática y Mecánica, I.I.M.A.S - U.N.A.M., Apdo. Postal 20-726, 01000 México D. F., Mexico |
References:
[1] |
S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.
doi: 10.1016/0022-247X(87)90116-8. |
[2] |
J. Balbus and J. Mierczyński, Time-averaging and permanence in nonautonomous competitive systems of PDE's via Vance-Coddington estiamtes, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1407-1425.
doi: 10.3934/dcdsb.2012.17.1407. |
[3] |
T. A. Burton and V. Hutson, Permanence for nonautonomous predator-prey systems, Differential Integral Equations, 4 (1991), 1269-1280. |
[4] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Analysis, 72 (2010), 1967-1976.
doi: 10.1016/j.na.2009.09.037. |
[5] |
D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, World Scientific Publishing Co. Pte. Ltd, 2004.
doi: 10.1142/9789812563088. |
[6] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications, 49, America Mathematical Society, 2002. |
[7] |
B. D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to environmental change, Math. Biosci, 45 (1979), 159-173.
doi: 10.1016/0025-5564(79)90057-9. |
[8] |
T. G. Hallam and C. E. Clarck, Nonautonomous logistic equations as models of populations in a deteriorating environment, J. Theoret. Biol., 93 (1981), 301-311.
doi: 10.1016/0022-5193(81)90106-5. |
[9] |
J. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 9 (1989), 388-395.
doi: 10.1137/0520025. |
[10] |
V. Hutson and K. Schmitt, Permanence in dynamical systems, Math. Biosci., 111 (1992), 1-71.
doi: 10.1016/0025-5564(92)90078-B. |
[11] |
P. E. Kloeden, Pullback attractors of nonautonomous semidynamical system, Stochastics and Dynamics, 3 (2003), 101-112.
doi: 10.1142/S0219493703000632. |
[12] |
J. A. Langa, J. C. Robinson, A. Rodríguez-Bernal and A. Suárez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion, SIAM J. Math. Anal., 40 (2009), 2179-2216.
doi: 10.1137/080721790. |
[13] |
J. A. Langa, J. C. Robinson and A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, Nonlinearity, 16 (2003), 1277-1293.
doi: 10.1088/0951-7715/16/4/305. |
[14] |
J. A. Langa, A. Rodríguez-Bernal and S. Suárez, On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method, J. Differential Equations, 249 (2010), 414-445.
doi: 10.1016/j.jde.2010.04.001. |
[15] |
M. N. Nkashama, Dynamics of logistic equations with non-autonomous bounded coefficients, Electron. J. Differential Equations, 2000 (2000), 8 pp. (electronic). |
[16] |
J. C. Robinson, Infinite-Dimensional Dynamical System. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Text in Applied Mathematics, 2001.
doi: 10.1007/978-94-010-0732-0. |
[17] |
G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 241-283. |
[18] |
J. Sugie, Y. Saito and M. Fan, Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment, Proc. Amer. Math. Soc., 139 (2011), 3475-3483.
doi: 10.1090/S0002-9939-2011-11124-9. |
[19] |
R. R. Vance and E. A. Coddington, A nonautonomous model of population growth, J. Math. Biol., 27 (1989), 491-506.
doi: 10.1007/BF00288430. |
show all references
References:
[1] |
S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.
doi: 10.1016/0022-247X(87)90116-8. |
[2] |
J. Balbus and J. Mierczyński, Time-averaging and permanence in nonautonomous competitive systems of PDE's via Vance-Coddington estiamtes, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1407-1425.
doi: 10.3934/dcdsb.2012.17.1407. |
[3] |
T. A. Burton and V. Hutson, Permanence for nonautonomous predator-prey systems, Differential Integral Equations, 4 (1991), 1269-1280. |
[4] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Analysis, 72 (2010), 1967-1976.
doi: 10.1016/j.na.2009.09.037. |
[5] |
D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, World Scientific Publishing Co. Pte. Ltd, 2004.
doi: 10.1142/9789812563088. |
[6] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications, 49, America Mathematical Society, 2002. |
[7] |
B. D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to environmental change, Math. Biosci, 45 (1979), 159-173.
doi: 10.1016/0025-5564(79)90057-9. |
[8] |
T. G. Hallam and C. E. Clarck, Nonautonomous logistic equations as models of populations in a deteriorating environment, J. Theoret. Biol., 93 (1981), 301-311.
doi: 10.1016/0022-5193(81)90106-5. |
[9] |
J. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 9 (1989), 388-395.
doi: 10.1137/0520025. |
[10] |
V. Hutson and K. Schmitt, Permanence in dynamical systems, Math. Biosci., 111 (1992), 1-71.
doi: 10.1016/0025-5564(92)90078-B. |
[11] |
P. E. Kloeden, Pullback attractors of nonautonomous semidynamical system, Stochastics and Dynamics, 3 (2003), 101-112.
doi: 10.1142/S0219493703000632. |
[12] |
J. A. Langa, J. C. Robinson, A. Rodríguez-Bernal and A. Suárez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion, SIAM J. Math. Anal., 40 (2009), 2179-2216.
doi: 10.1137/080721790. |
[13] |
J. A. Langa, J. C. Robinson and A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, Nonlinearity, 16 (2003), 1277-1293.
doi: 10.1088/0951-7715/16/4/305. |
[14] |
J. A. Langa, A. Rodríguez-Bernal and S. Suárez, On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method, J. Differential Equations, 249 (2010), 414-445.
doi: 10.1016/j.jde.2010.04.001. |
[15] |
M. N. Nkashama, Dynamics of logistic equations with non-autonomous bounded coefficients, Electron. J. Differential Equations, 2000 (2000), 8 pp. (electronic). |
[16] |
J. C. Robinson, Infinite-Dimensional Dynamical System. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Text in Applied Mathematics, 2001.
doi: 10.1007/978-94-010-0732-0. |
[17] |
G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 241-283. |
[18] |
J. Sugie, Y. Saito and M. Fan, Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment, Proc. Amer. Math. Soc., 139 (2011), 3475-3483.
doi: 10.1090/S0002-9939-2011-11124-9. |
[19] |
R. R. Vance and E. A. Coddington, A nonautonomous model of population growth, J. Math. Biol., 27 (1989), 491-506.
doi: 10.1007/BF00288430. |
[1] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703 |
[2] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[3] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[4] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[5] |
T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037 |
[6] |
Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082 |
[7] |
Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543 |
[8] |
Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167 |
[9] |
Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214 |
[10] |
Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639 |
[11] |
Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244 |
[12] |
Penghui Zhang, Zhaosheng Feng, Lu Yang. Non-autonomous weakly damped plate model on time-dependent domains. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3319-3336. doi: 10.3934/dcdss.2021076 |
[13] |
Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270 |
[14] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[15] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[16] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[17] |
Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021276 |
[18] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[19] |
Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211 |
[20] |
Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]