Advanced Search
Article Contents
Article Contents

Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients

Abstract Related Papers Cited by
  • In this work we study the asymptotic behaviour of the following prey-predator system \begin{equation*} \left\{ \begin{split} &A'=\alpha f(t)A-\beta g(t)A^2-\gamma AP\\ &P'=\delta h(t)P-\lambda m(t)P^2+\mu AP, \end{split} \right. \end{equation*} where functions $f,g:\mathbb{R}\rightarrow\mathbb{R}$ are not necessarily bounded above. We also prove the existence of the pullback attractor and the permanence of solutions for any positive initial data and initial time, making a previous study of a logistic equation with unbounded terms, where one of them can be negative for a bounded interval of time. The analysis of a non-autonomous logistic equation with unbounded coefficients is also needed to ensure the permanence of the model.
    Mathematics Subject Classification: 92D15, 35B40, 37N25, 92D25, 34E99.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.doi: 10.1016/0022-247X(87)90116-8.


    J. Balbus and J. Mierczyński, Time-averaging and permanence in nonautonomous competitive systems of PDE's via Vance-Coddington estiamtes, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1407-1425.doi: 10.3934/dcdsb.2012.17.1407.


    T. A. Burton and V. Hutson, Permanence for nonautonomous predator-prey systems, Differential Integral Equations, 4 (1991), 1269-1280.


    T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Analysis, 72 (2010), 1967-1976.doi: 10.1016/j.na.2009.09.037.


    D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, World Scientific Publishing Co. Pte. Ltd, 2004.doi: 10.1142/9789812563088.


    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications, 49, America Mathematical Society, 2002.


    B. D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to environmental change, Math. Biosci, 45 (1979), 159-173.doi: 10.1016/0025-5564(79)90057-9.


    T. G. Hallam and C. E. Clarck, Nonautonomous logistic equations as models of populations in a deteriorating environment, J. Theoret. Biol., 93 (1981), 301-311.doi: 10.1016/0022-5193(81)90106-5.


    J. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 9 (1989), 388-395.doi: 10.1137/0520025.


    V. Hutson and K. Schmitt, Permanence in dynamical systems, Math. Biosci., 111 (1992), 1-71.doi: 10.1016/0025-5564(92)90078-B.


    P. E. Kloeden, Pullback attractors of nonautonomous semidynamical system, Stochastics and Dynamics, 3 (2003), 101-112.doi: 10.1142/S0219493703000632.


    J. A. Langa, J. C. Robinson, A. Rodríguez-Bernal and A. Suárez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion, SIAM J. Math. Anal., 40 (2009), 2179-2216.doi: 10.1137/080721790.


    J. A. Langa, J. C. Robinson and A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, Nonlinearity, 16 (2003), 1277-1293.doi: 10.1088/0951-7715/16/4/305.


    J. A. Langa, A. Rodríguez-Bernal and S. Suárez, On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method, J. Differential Equations, 249 (2010), 414-445.doi: 10.1016/j.jde.2010.04.001.


    M. N. Nkashama, Dynamics of logistic equations with non-autonomous bounded coefficients, Electron. J. Differential Equations, 2000 (2000), 8 pp. (electronic).


    J. C. Robinson, Infinite-Dimensional Dynamical System. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Text in Applied Mathematics, 2001.doi: 10.1007/978-94-010-0732-0.


    G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 241-283.


    J. Sugie, Y. Saito and M. Fan, Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment, Proc. Amer. Math. Soc., 139 (2011), 3475-3483.doi: 10.1090/S0002-9939-2011-11124-9.


    R. R. Vance and E. A. Coddington, A nonautonomous model of population growth, J. Math. Biol., 27 (1989), 491-506.doi: 10.1007/BF00288430.

  • 加载中

Article Metrics

HTML views() PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint