\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Kalman-Bucy filter revisited

Abstract Related Papers Cited by
  • We study the properties of the error covariance matrix and the asymptotic error covariance matrix of the Kalman-Bucy filter model with time-varying coefficients. We make use of such techniques of the theory of nonautonomous differential systems as the exponential dichotomy concept and the rotation number.
    Mathematics Subject Classification: 37B55, 93C05, 94E11.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Anderson and J. Moore, The Kalman-Bucy filter as a true time-varying Wiener filter, IEEE T. Syst. MAN Cyb., SMC-1 (1971), 119-128.

    [2]

    B. Anderson and J. Moore, Detectability and stabilizability of time-varying discrete-time linear systems, SIAM J. Control Opt., 19 (1981), 20-32.doi: 10.1137/0319002.

    [3]

    V. I. Arnold, On a characteristic class entering into conditions of quantization, Funk. Anal. Appl., 1 (1967), 1-13.doi: 10.1007/BF01075861.

    [4]

    B. Bell, J. Burke and G. Pillonetto, An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization, Automatica, 45 (2009), 25-33.doi: 10.1016/j.automatica.2008.05.029.

    [5]

    A. Benavoli and L. Chisci, Robust stochastic control based on imprecise probabilities, Proc. 18th IFAC World Congress, (2011), 4606-4613.

    [6]

    P. Bougerol, Filtre de Kalman-Bucy et exposants de Lyapounov, Oberwolfach, 1990, Lecture Notes in Math., Springer, Berlin, 1486 (1991), 112-122,.doi: 10.1007/BFb0086662.

    [7]

    P. Bougerol, Some results on the filtering Riccati equation with random parameters, Applied Stochastic Analysis (New Brunswick, NJ, 1991), Lecture Notes in Control and Inform. Sci., 177, Springer, Berlin, 1992, 30-37.doi: 10.1007/BFb0007046.

    [8]

    P. Bougerol, Kalman filtering with random coefficients and contractions, SIAM Jour. Control Optim., 31 (1993), 942-959.doi: 10.1137/0331041.

    [9]

    R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.

    [10]

    R. Fabbri, R. Johnson and C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems I: Basic properties, Z. angew. Math. Phys., 54 (2002), 484-502.doi: 10.1007/s00033-003-1068-1.

    [11]

    R. Fabbri, R. Johnson and C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems II: The Floquet coefficient, Z. angew. Math. Phys., 54 (2003), 652-676.doi: 10.1007/s00033-003-1057-4.

    [12]

    F. Fagnani and J. Willems, Deterministic Kalman filtering in a behavioral framework, Sys. Cont. Letters, 32 (1997), 301-312.doi: 10.1016/S0167-6911(97)00086-8.

    [13]

    W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, Heidelberg, Berlin, 1975.

    [14]

    R. Johnson, $m$-functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl., 147 (1987), 211-248.doi: 10.1007/BF01762419.

    [15]

    R. Johnson and M. Nerurkar, On null controllability of linear systems with recurrent coefficients and constrained controls, J. Dynam. Differ. Equations, 4 (1992), 259-273.doi: 10.1007/BF01049388.

    [16]

    R. Johnson and M. Nerurkar, Exponential dichotomy and rotation number for linear Hamiltonian systems, J. Differential Equations, 108 (1994), 201-216.doi: 10.1006/jdeq.1994.1033.

    [17]

    R. Johnson and M. Nerurkar, Stabilization and random linear regulator problem for random linear control processes, J. Math. Anal. Appl., 197 (1996), 608-629.doi: 10.1006/jmaa.1996.0042.

    [18]

    R. Kalman and R. Bucy, New results in linear filtering and prediction theory, Trans. ASME, Basic Eng. Ser. D, 83 (1961), 95-108.doi: 10.1115/1.3658902.

    [19]

    Y. Matsushima, Differentiable Manifolds, Marcel Dekker, New York, 1972.

    [20]

    A. S. Mishchenko, V. E. Shatalov and B. Yu. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer-Verlag, Berlin, Heidelberg, New York, 1990.doi: 10.1007/978-3-642-61259-6.

    [21]

    V. Nemytskii and V. Stepanoff, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, NJ, 1960.

    [22]

    S. Novo, C. Núñez and R. Obaya, Ergodic properties and rotation number for linear Hamiltonian systems, J. Differential Equations, 148 (1998), 148-185.doi: 10.1006/jdeq.1998.3469.

    [23]

    R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems III, J. Differential Equations, 22 (1976), 497-522.doi: 10.1016/0022-0396(76)90043-7.

    [24]

    R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.doi: 10.1016/0022-0396(78)90057-8.

    [25]

    M. P. Wojtkowski, Measure theoretic entropy of the system of hard spheres, Ergodic Theory Dynam. Systems, 8 (1988), 133-153.doi: 10.1017/S0143385700004363.

    [26]

    Y. Yi, A generalized integral manifold theorem, J. Differential Equations, 102 (1993), 153-187.doi: 10.1006/jdeq.1993.1026.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(635) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return