November  2014, 34(11): 4487-4513. doi: 10.3934/dcds.2014.34.4487

Renormalizations of circle hoemomorphisms with a single break point

1. 

Faculty of Mathematics and Mechanics. Samarkand State University, Boulevard Street 15, 140104 Samarkand, Uzbekistan

2. 

Turin Politechnic University in Tashkent, Kichik halqa yuli 17, 100095 Tashkent, Uzbekistan

3. 

Institut für Theoretische Physik, TU Clausthal, Leibnizstrasse 10, D-38678 Clausthal-Zellerfeld, Germany

Received  November 2013 Revised  March 2014 Published  May 2014

Let $f$ be an orientation preserving circle homeomorphism with a single break point $x_b,$ i.e. with a jump in the first derivative $f'$ at the point $x_b,$ and with irrational rotation number $\rho=\rho_{f}.$ Suppose that $f$ satisfies the Katznelson and Ornstein smoothness conditions, i.e. $f'$ is absolutely continuous on $[x_b,x_b+1]$ and $f''(x)\in \mathbb{L}^{p}([0,1), d\ell)$ for some $p>1$, where $\ell$ is Lebesque measure. We prove, that the renormalizations of $f$ are approximated by linear-fractional functions in $\mathbb{C}^{1+L^{1}}$, that means, $f$ is approximated in $C^{1}-$ norm and $f''$ is appoximated in $L^{1}-$ norm. Also it is shown, that renormalizations of circle diffeomorphisms with irrational rotation number satisfying the Katznelson and Ornstein smoothness conditions are close to linear functions in $\mathbb{C}^{1+L^{1}}$- norm.
Citation: Abdumajid Begmatov, Akhtam Dzhalilov, Dieter Mayer. Renormalizations of circle hoemomorphisms with a single break point. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4487-4513. doi: 10.3934/dcds.2014.34.4487
References:
[1]

V. I. Arnol'd, Small denominators: I. Mappings from the circle onto itself,, Izv. Akad. Nauk SSSR, 25 (1961), 21.   Google Scholar

[2]

H. Akhadkulov, A. Dzhalilov and D. Mayer, On conjugations of circle homeomorphisms with two break points,, Ergod. Theor. and Dynam. Syst., 34 (2014), 725.  doi: 10.1017/etds.2012.159.  Google Scholar

[3]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore,, J. Math. Pures Appl., 11 (1932), 333.   Google Scholar

[5]

A. A. Dzhalilov and K. M. Khanin, On invariant measure for homeomorphisms of a circle with a point of break,, Funct. Anal. Appl., 32 (1998), 153.  doi: 10.1007/BF02463336.  Google Scholar

[6]

A. A. Dzhalilov and I. Liousse, Circle homeomorphismswith two break points,, Nonlinearity, 19 (2006), 1951.  doi: 10.1088/0951-7715/19/8/010.  Google Scholar

[7]

A. A. Dzhalilov, I. Liousse and D. Mayer, Singular measures of piecewise smooth circle homeomorphisms with two break points,, Discrete and continuous dynamical systems, 24 (2009), 381.  doi: 10.3934/dcds.2009.24.381.  Google Scholar

[8]

A. A. Dzhalilov, H. Akin and S. Temir, Conjugations between circle maps with a single break point,, Journal of Mathematical Analysis and Applications, 366 (2010), 1.  doi: 10.1016/j.jmaa.2009.12.050.  Google Scholar

[9]

A. A. Dzhalilov, D. Mayer and U. A. Safarov, Piecwise-smooth circle homeomorphisms with several break points,, Izvestiya RAN: Ser. Mat., 76 (2012), 101.   Google Scholar

[10]

E. de Faria and W. de Melo, Rigidity of critical circle mappings,, I. J. Eur. Math. Soc. (JEMS), 1 (1999), 339.  doi: 10.1007/s100970050011.  Google Scholar

[11]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5.  doi: 10.1007/BF02684798.  Google Scholar

[12]

Y. Katznelson and D. Ornstein, The differentability continuity of the conjugation of certain diffeomorphisms of the circle,, Ergod. Theor. Dyn. Syst., 9 (1989), 643.  doi: 10.1017/S0143385700005277.  Google Scholar

[13]

Y. Katznelson and D. Ornstein, The absolute continuity of the conjugation of certain diffeomorphisms of the circle,, Ergod. Theor. Dyn. Syst., 9 (1989), 681.  doi: 10.1017/S0143385700005289.  Google Scholar

[14]

K. M. Khanin and Ya. G. Sinai, Smoothness of conjugacies of diffeomorphisms of the circle with rotations,, Russ. Math. Surv., 44 (1989), 69.  doi: 10.1070/RM1989v044n01ABEH002008.  Google Scholar

[15]

K. M. Khanin and E. B. Vul, Circle homeomorphisms with weak discontinuities,, Advances in Soviet Mathematics, 3 (1991), 57.   Google Scholar

[16]

K. M. Khanin and D. Khmelev, Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type,, Commun. Math. Phys., 235 (2003), 69.  doi: 10.1007/s00220-003-0809-5.  Google Scholar

[17]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations,, Bull. Braz. Math. Soc., 35 (2004), 269.  doi: 10.1007/s00574-004-0014-y.  Google Scholar

[18]

J. Stark, Smooth conjugacy and renormalization for diffeomorfisms of the circle,, Nonlinearity, 1 (1988), 541.  doi: 10.1088/0951-7715/1/4/004.  Google Scholar

[19]

G. Swiatek, Rational rotation number for maps of the circle,, Commun. Math. Phys., (1988), 109.  doi: 10.1007/BF01218263.  Google Scholar

[20]

M. Stein, Groups of piecewise linear homeomorphisms,, Trans. A.M.S., 332 (1992), 477.  doi: 10.1090/S0002-9947-1992-1094555-4.  Google Scholar

[21]

A. Yu. Teplinskii and K. M. Khanin, Robust rigidity for circle diffeomorphisms with singularities,, Inventiones mathematicae, 169 (2007), 193.  doi: 10.1007/s00222-007-0047-0.  Google Scholar

[22]

J. C. Yoccoz, Il n'y a pas de contre-exemple de Denjoy analytique,, C. R. Acad. Sci. Paris, 298 (1984), 141.   Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Small denominators: I. Mappings from the circle onto itself,, Izv. Akad. Nauk SSSR, 25 (1961), 21.   Google Scholar

[2]

H. Akhadkulov, A. Dzhalilov and D. Mayer, On conjugations of circle homeomorphisms with two break points,, Ergod. Theor. and Dynam. Syst., 34 (2014), 725.  doi: 10.1017/etds.2012.159.  Google Scholar

[3]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore,, J. Math. Pures Appl., 11 (1932), 333.   Google Scholar

[5]

A. A. Dzhalilov and K. M. Khanin, On invariant measure for homeomorphisms of a circle with a point of break,, Funct. Anal. Appl., 32 (1998), 153.  doi: 10.1007/BF02463336.  Google Scholar

[6]

A. A. Dzhalilov and I. Liousse, Circle homeomorphismswith two break points,, Nonlinearity, 19 (2006), 1951.  doi: 10.1088/0951-7715/19/8/010.  Google Scholar

[7]

A. A. Dzhalilov, I. Liousse and D. Mayer, Singular measures of piecewise smooth circle homeomorphisms with two break points,, Discrete and continuous dynamical systems, 24 (2009), 381.  doi: 10.3934/dcds.2009.24.381.  Google Scholar

[8]

A. A. Dzhalilov, H. Akin and S. Temir, Conjugations between circle maps with a single break point,, Journal of Mathematical Analysis and Applications, 366 (2010), 1.  doi: 10.1016/j.jmaa.2009.12.050.  Google Scholar

[9]

A. A. Dzhalilov, D. Mayer and U. A. Safarov, Piecwise-smooth circle homeomorphisms with several break points,, Izvestiya RAN: Ser. Mat., 76 (2012), 101.   Google Scholar

[10]

E. de Faria and W. de Melo, Rigidity of critical circle mappings,, I. J. Eur. Math. Soc. (JEMS), 1 (1999), 339.  doi: 10.1007/s100970050011.  Google Scholar

[11]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5.  doi: 10.1007/BF02684798.  Google Scholar

[12]

Y. Katznelson and D. Ornstein, The differentability continuity of the conjugation of certain diffeomorphisms of the circle,, Ergod. Theor. Dyn. Syst., 9 (1989), 643.  doi: 10.1017/S0143385700005277.  Google Scholar

[13]

Y. Katznelson and D. Ornstein, The absolute continuity of the conjugation of certain diffeomorphisms of the circle,, Ergod. Theor. Dyn. Syst., 9 (1989), 681.  doi: 10.1017/S0143385700005289.  Google Scholar

[14]

K. M. Khanin and Ya. G. Sinai, Smoothness of conjugacies of diffeomorphisms of the circle with rotations,, Russ. Math. Surv., 44 (1989), 69.  doi: 10.1070/RM1989v044n01ABEH002008.  Google Scholar

[15]

K. M. Khanin and E. B. Vul, Circle homeomorphisms with weak discontinuities,, Advances in Soviet Mathematics, 3 (1991), 57.   Google Scholar

[16]

K. M. Khanin and D. Khmelev, Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type,, Commun. Math. Phys., 235 (2003), 69.  doi: 10.1007/s00220-003-0809-5.  Google Scholar

[17]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations,, Bull. Braz. Math. Soc., 35 (2004), 269.  doi: 10.1007/s00574-004-0014-y.  Google Scholar

[18]

J. Stark, Smooth conjugacy and renormalization for diffeomorfisms of the circle,, Nonlinearity, 1 (1988), 541.  doi: 10.1088/0951-7715/1/4/004.  Google Scholar

[19]

G. Swiatek, Rational rotation number for maps of the circle,, Commun. Math. Phys., (1988), 109.  doi: 10.1007/BF01218263.  Google Scholar

[20]

M. Stein, Groups of piecewise linear homeomorphisms,, Trans. A.M.S., 332 (1992), 477.  doi: 10.1090/S0002-9947-1992-1094555-4.  Google Scholar

[21]

A. Yu. Teplinskii and K. M. Khanin, Robust rigidity for circle diffeomorphisms with singularities,, Inventiones mathematicae, 169 (2007), 193.  doi: 10.1007/s00222-007-0047-0.  Google Scholar

[22]

J. C. Yoccoz, Il n'y a pas de contre-exemple de Denjoy analytique,, C. R. Acad. Sci. Paris, 298 (1984), 141.   Google Scholar

[1]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[2]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[3]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[4]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[5]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[6]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[7]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[8]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[9]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[14]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[15]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[16]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[17]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[20]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

[Back to Top]