\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Renormalizations of circle hoemomorphisms with a single break point

Abstract Related Papers Cited by
  • Let $f$ be an orientation preserving circle homeomorphism with a single break point $x_b,$ i.e. with a jump in the first derivative $f'$ at the point $x_b,$ and with irrational rotation number $\rho=\rho_{f}.$ Suppose that $f$ satisfies the Katznelson and Ornstein smoothness conditions, i.e. $f'$ is absolutely continuous on $[x_b,x_b+1]$ and $f''(x)\in \mathbb{L}^{p}([0,1), d\ell)$ for some $p>1$, where $\ell$ is Lebesque measure. We prove, that the renormalizations of $f$ are approximated by linear-fractional functions in $\mathbb{C}^{1+L^{1}}$, that means, $f$ is approximated in $C^{1}-$ norm and $f''$ is appoximated in $L^{1}-$ norm. Also it is shown, that renormalizations of circle diffeomorphisms with irrational rotation number satisfying the Katznelson and Ornstein smoothness conditions are close to linear functions in $\mathbb{C}^{1+L^{1}}$- norm.
    Mathematics Subject Classification: Primary: 37E10, 37E20; Secondary: 37C15, 37C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnol'd, Small denominators: I. Mappings from the circle onto itself, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 21-86.

    [2]

    H. Akhadkulov, A. Dzhalilov and D. Mayer, On conjugations of circle homeomorphisms with two break points, Ergod. Theor. and Dynam. Syst., 34 (2014), 725-741.doi: 10.1017/etds.2012.159.

    [3]

    I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.doi: 10.1007/978-1-4615-6927-5.

    [4]

    A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375.

    [5]

    A. A. Dzhalilov and K. M. Khanin, On invariant measure for homeomorphisms of a circle with a point of break, Funct. Anal. Appl., 32 (1998), 153-161.doi: 10.1007/BF02463336.

    [6]

    A. A. Dzhalilov and I. Liousse, Circle homeomorphismswith two break points, Nonlinearity, 19 (2006), 1951-1968.doi: 10.1088/0951-7715/19/8/010.

    [7]

    A. A. Dzhalilov, I. Liousse and D. Mayer, Singular measures of piecewise smooth circle homeomorphisms with two break points, Discrete and continuous dynamical systems, 24 (2009), 381-403.doi: 10.3934/dcds.2009.24.381.

    [8]

    A. A. Dzhalilov, H. Akin and S. Temir, Conjugations between circle maps with a single break point, Journal of Mathematical Analysis and Applications, 366 (2010), 1-10.doi: 10.1016/j.jmaa.2009.12.050.

    [9]

    A. A. Dzhalilov, D. Mayer and U. A. Safarov, Piecwise-smooth circle homeomorphisms with several break points, Izvestiya RAN: Ser. Mat., 76 (2012), 101-120, translation of Izvestiya: Mathematics, 76 (2012), 94-112.

    [10]

    E. de Faria and W. de Melo, Rigidity of critical circle mappings, I. J. Eur. Math. Soc. (JEMS), 1 (1999), 339-392.doi: 10.1007/s100970050011.

    [11]

    M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5-233.doi: 10.1007/BF02684798.

    [12]

    Y. Katznelson and D. Ornstein, The differentability continuity of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989), 643-680.doi: 10.1017/S0143385700005277.

    [13]

    Y. Katznelson and D. Ornstein, The absolute continuity of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989), 681-690 .doi: 10.1017/S0143385700005289.

    [14]

    K. M. Khanin and Ya. G. Sinai, Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Russ. Math. Surv., 44 (1989), 69-99, translation of Usp. Mat. Nauk, 44 (1989), 57-82.doi: 10.1070/RM1989v044n01ABEH002008.

    [15]

    K. M. Khanin and E. B. Vul, Circle homeomorphisms with weak discontinuities, Advances in Soviet Mathematics, 3 (1991), 57-98.

    [16]

    K. M. Khanin and D. Khmelev, Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type, Commun. Math. Phys., 235 (2003), 69-124.doi: 10.1007/s00220-003-0809-5.

    [17]

    I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations, Bull. Braz. Math. Soc., 35 (2004), 269-280.doi: 10.1007/s00574-004-0014-y.

    [18]

    J. Stark, Smooth conjugacy and renormalization for diffeomorfisms of the circle, Nonlinearity, 1 (1988), 541-575.doi: 10.1088/0951-7715/1/4/004.

    [19]

    G. Swiatek, Rational rotation number for maps of the circle, Commun. Math. Phys., textbf{119} (1988), 109-128.doi: 10.1007/BF01218263.

    [20]

    M. Stein, Groups of piecewise linear homeomorphisms, Trans. A.M.S., 332 (1992), 477-514.doi: 10.1090/S0002-9947-1992-1094555-4.

    [21]

    A. Yu. Teplinskii and K. M. Khanin, Robust rigidity for circle diffeomorphisms with singularities, Inventiones mathematicae, 169 (2007), 193-218.doi: 10.1007/s00222-007-0047-0.

    [22]

    J. C. Yoccoz, Il n'y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci. Paris, 298 (1984), 141-144.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return