-
Previous Article
Localization, smoothness, and convergence to equilibrium for a thin film equation
- DCDS Home
- This Issue
-
Next Article
Renormalizations of circle hoemomorphisms with a single break point
Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation
1. | Institut für Mathematik, Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria, Austria |
We use the theory of operator semigroups in order to investigate the linearization of the underlying model and see that the underlying semigroup is analytic. This leads to exponential decay results for the linear homogeneous equation.
Moreover, we prove local in time well-posedness of the model under the assumption that initial data are sufficiently small by employing a fixed point argument. Global in time well-posedness is obtained by performing energy estimates and using the classical barrier method, again for sufficiently small initial data.
Additionally, we provide results concerning exponential decay of solutions of the nonlinear equation.
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).
|
[2] |
G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.
|
[3] |
S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15.
doi: 10.2140/pjm.1989.136.15. |
[4] |
F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321. Google Scholar |
[5] |
D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11.
doi: 10.1146/annurev.fl.11.010179.000303. |
[6] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).
|
[7] |
L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).
|
[8] |
H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).
|
[9] |
M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997).
doi: 10.1121/1.426968. |
[10] |
P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77.
doi: 10.1016/j.physleta.2004.03.067. |
[11] |
B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503.
doi: 10.3934/dcdss.2009.2.503. |
[12] |
B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295.
doi: 10.1002/mana.201000007. |
[13] |
B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.
|
[14] |
B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.
|
[15] |
B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012).
doi: 10.1142/S0218202512500352. |
[16] |
M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004).
doi: 10.1007/978-3-662-05358-4. |
[17] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).
|
[18] |
V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467. Google Scholar |
[19] |
J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1.
doi: 10.1016/S0898-1221(97)00072-2. |
[20] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521. Google Scholar |
[21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[22] |
A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337.
doi: 10.1016/j.crma.2007.01.010. |
[23] |
S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316. Google Scholar |
[24] |
P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535.
doi: 10.1121/1.1918525. |
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).
|
[2] |
G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.
|
[3] |
S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15.
doi: 10.2140/pjm.1989.136.15. |
[4] |
F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321. Google Scholar |
[5] |
D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11.
doi: 10.1146/annurev.fl.11.010179.000303. |
[6] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).
|
[7] |
L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).
|
[8] |
H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).
|
[9] |
M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997).
doi: 10.1121/1.426968. |
[10] |
P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77.
doi: 10.1016/j.physleta.2004.03.067. |
[11] |
B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503.
doi: 10.3934/dcdss.2009.2.503. |
[12] |
B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295.
doi: 10.1002/mana.201000007. |
[13] |
B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.
|
[14] |
B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.
|
[15] |
B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012).
doi: 10.1142/S0218202512500352. |
[16] |
M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004).
doi: 10.1007/978-3-662-05358-4. |
[17] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).
|
[18] |
V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467. Google Scholar |
[19] |
J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1.
doi: 10.1016/S0898-1221(97)00072-2. |
[20] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521. Google Scholar |
[21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[22] |
A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337.
doi: 10.1016/j.crma.2007.01.010. |
[23] |
S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316. Google Scholar |
[24] |
P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535.
doi: 10.1121/1.1918525. |
[1] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[2] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[3] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[4] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[5] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[6] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[7] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[8] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[9] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[10] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[11] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[12] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[13] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[14] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[15] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[16] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[17] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[18] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[19] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[20] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]