November  2014, 34(11): 4515-4535. doi: 10.3934/dcds.2014.34.4515

Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation

1. 

Institut für Mathematik, Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria, Austria

Received  November 2013 Revised  March 2014 Published  May 2014

We consider a nonlinear fourth order in space partial differential equation arising in the context of the modeling of nonlinear acoustic wave propagation in thermally relaxing viscous fluids.
    We use the theory of operator semigroups in order to investigate the linearization of the underlying model and see that the underlying semigroup is analytic. This leads to exponential decay results for the linear homogeneous equation.
    Moreover, we prove local in time well-posedness of the model under the assumption that initial data are sufficiently small by employing a fixed point argument. Global in time well-posedness is obtained by performing energy estimates and using the classical barrier method, again for sufficiently small initial data.
    Additionally, we provide results concerning exponential decay of solutions of the nonlinear equation.
Citation: Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition, Elsevier/Academic Press, Amsterdam, 2003.

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433. 

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific Journal of Mathematics, 136 (1989), 15-55. doi: 10.2140/pjm.1989.136.15.

[4]

F. Coulouvrat, On the equations of nonlinear acoustics, Journal d'Acoustique, 5 (1992), 321-359.

[5]

D. G. Crighton, Model equations of nonlinear acoustics, Annual Review of Fluid Mechanics, 11 (1979), 11-33. doi: 10.1146/annurev.fl.11.010179.000303.

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.

[7]

L. C. Evans, Partial Differential Equations, Second Edition, American Mathematical Society, Providence, 2010.

[8]

H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Massachusetts, 1983.

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Academic Press, New York, 1997. doi: 10.1121/1.426968.

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation, Physics Letters A, 326 (2004), 77-84. doi: 10.1016/j.physleta.2004.03.067.

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503-523. doi: 10.3934/dcdss.2009.2.503.

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay, Mathematische Nachrichten, 285 (2012), 295-321. doi: 10.1002/mana.201000007.

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, DCDS Supplement, Proceedings of the 8th AIMS Conference, II (2011), 763-773.

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation, Control and Cybernetics, 40 (2011), 971-988.

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250035, 34 pages. doi: 10.1142/S0218202512500352.

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, Springer, Berlin, 2004. doi: 10.1007/978-3-662-05358-4.

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris-Chicester, 1994.

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics, Soviet physics. Acoustics, 16 (1971), 467-470.

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation, Computers and Mathematics with Applications, 33 (1997), 1-9. doi: 10.1016/S0898-1221(97)00072-2.

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573.

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation, Comptes Rendus Mathematique, 344 (2007), 337-342. doi: 10.1016/j.crma.2007.01.010.

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics, Acta Acustica united with Acustica, 87 (2001), 316-321.

[24]

P. J. Westervelt, Parametric acoustic array, Journal of the Acoustical Society of America, 35 (1963), 535-537. doi: 10.1121/1.1918525.

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition, Elsevier/Academic Press, Amsterdam, 2003.

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433. 

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific Journal of Mathematics, 136 (1989), 15-55. doi: 10.2140/pjm.1989.136.15.

[4]

F. Coulouvrat, On the equations of nonlinear acoustics, Journal d'Acoustique, 5 (1992), 321-359.

[5]

D. G. Crighton, Model equations of nonlinear acoustics, Annual Review of Fluid Mechanics, 11 (1979), 11-33. doi: 10.1146/annurev.fl.11.010179.000303.

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.

[7]

L. C. Evans, Partial Differential Equations, Second Edition, American Mathematical Society, Providence, 2010.

[8]

H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Massachusetts, 1983.

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Academic Press, New York, 1997. doi: 10.1121/1.426968.

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation, Physics Letters A, 326 (2004), 77-84. doi: 10.1016/j.physleta.2004.03.067.

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503-523. doi: 10.3934/dcdss.2009.2.503.

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay, Mathematische Nachrichten, 285 (2012), 295-321. doi: 10.1002/mana.201000007.

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, DCDS Supplement, Proceedings of the 8th AIMS Conference, II (2011), 763-773.

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation, Control and Cybernetics, 40 (2011), 971-988.

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250035, 34 pages. doi: 10.1142/S0218202512500352.

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, Springer, Berlin, 2004. doi: 10.1007/978-3-662-05358-4.

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris-Chicester, 1994.

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics, Soviet physics. Acoustics, 16 (1971), 467-470.

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation, Computers and Mathematics with Applications, 33 (1997), 1-9. doi: 10.1016/S0898-1221(97)00072-2.

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573.

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation, Comptes Rendus Mathematique, 344 (2007), 337-342. doi: 10.1016/j.crma.2007.01.010.

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics, Acta Acustica united with Acustica, 87 (2001), 316-321.

[24]

P. J. Westervelt, Parametric acoustic array, Journal of the Acoustical Society of America, 35 (1963), 535-537. doi: 10.1121/1.1918525.

[1]

Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations and Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035

[2]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[3]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[4]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[5]

Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229

[6]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[7]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[8]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[9]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[10]

David Melching, Ulisse Stefanelli. Well-posedness of a one-dimensional nonlinear kinematic hardening model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2271-2284. doi: 10.3934/dcdss.2020188

[11]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057

[12]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[13]

Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025

[14]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[15]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations and Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[16]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[17]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[18]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[19]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[20]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]