November  2014, 34(11): 4515-4535. doi: 10.3934/dcds.2014.34.4515

Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation

1. 

Institut für Mathematik, Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria, Austria

Received  November 2013 Revised  March 2014 Published  May 2014

We consider a nonlinear fourth order in space partial differential equation arising in the context of the modeling of nonlinear acoustic wave propagation in thermally relaxing viscous fluids.
    We use the theory of operator semigroups in order to investigate the linearization of the underlying model and see that the underlying semigroup is analytic. This leads to exponential decay results for the linear homogeneous equation.
    Moreover, we prove local in time well-posedness of the model under the assumption that initial data are sufficiently small by employing a fixed point argument. Global in time well-posedness is obtained by performing energy estimates and using the classical barrier method, again for sufficiently small initial data.
    Additionally, we provide results concerning exponential decay of solutions of the nonlinear equation.
Citation: Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).   Google Scholar

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.   Google Scholar

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[4]

F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321.   Google Scholar

[5]

D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[7]

L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).   Google Scholar

[8]

H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).   Google Scholar

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997).  doi: 10.1121/1.426968.  Google Scholar

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77.  doi: 10.1016/j.physleta.2004.03.067.  Google Scholar

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503.  doi: 10.3934/dcdss.2009.2.503.  Google Scholar

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295.  doi: 10.1002/mana.201000007.  Google Scholar

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.   Google Scholar

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.   Google Scholar

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012).  doi: 10.1142/S0218202512500352.  Google Scholar

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004).  doi: 10.1007/978-3-662-05358-4.  Google Scholar

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).   Google Scholar

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467.   Google Scholar

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1.  doi: 10.1016/S0898-1221(97)00072-2.  Google Scholar

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.   Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337.  doi: 10.1016/j.crma.2007.01.010.  Google Scholar

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316.   Google Scholar

[24]

P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535.  doi: 10.1121/1.1918525.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).   Google Scholar

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.   Google Scholar

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[4]

F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321.   Google Scholar

[5]

D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[7]

L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).   Google Scholar

[8]

H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).   Google Scholar

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997).  doi: 10.1121/1.426968.  Google Scholar

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77.  doi: 10.1016/j.physleta.2004.03.067.  Google Scholar

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503.  doi: 10.3934/dcdss.2009.2.503.  Google Scholar

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295.  doi: 10.1002/mana.201000007.  Google Scholar

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.   Google Scholar

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.   Google Scholar

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012).  doi: 10.1142/S0218202512500352.  Google Scholar

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004).  doi: 10.1007/978-3-662-05358-4.  Google Scholar

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).   Google Scholar

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467.   Google Scholar

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1.  doi: 10.1016/S0898-1221(97)00072-2.  Google Scholar

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.   Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337.  doi: 10.1016/j.crma.2007.01.010.  Google Scholar

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316.   Google Scholar

[24]

P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535.  doi: 10.1121/1.1918525.  Google Scholar

[1]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[4]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[5]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[6]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[7]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[8]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[9]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[10]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[11]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[12]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[13]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[14]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[15]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[16]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[17]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[19]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[20]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]