November  2014, 34(11): 4565-4576. doi: 10.3934/dcds.2014.34.4565

On ill-posedness for the generalized BBM equation

1. 

Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas (UNICAMP), Rua Sergio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil

Received  October 2013 Revised  December 2013 Published  May 2014

We consider the Cauchy problem associated to the generalized Benjamin-Bona-Mahony (BBM) equation for given data in the $L^2$-based Sobolev spaces. Depending on the order of nonlinearity and dispersion, we prove that the Cauchy problem is ill-posed for data with lower order Sobolev regularity. We also prove that, in certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.
Citation: Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565
References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system, Adv. Differential Equations, 11 (2006), 121-166.

[2]

J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations, Discrete Contin. Dyn. Syst., 30 (2011), 851-871. doi: 10.3934/dcds.2011.30.851.

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Royal Soc. London, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[4]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457-510. doi: 10.1098/rsta.1981.0178.

[5]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete and Continuous Dynamical Systems, 23 (2009), 1241-1252. doi: 10.3934/dcds.2009.23.1241.

[6]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations, Disc. Cont. Dynamical Systems, 23 (2009), 1253-1275. doi: 10.3934/dcds.2009.23.1253.

[7]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. New Ser., 3 (1997), 115-159. doi: 10.1007/s000290050008.

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.

[9]

W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term, J. Diff. Equations, 240 (2007), 125-144. doi: 10.1016/j.jde.2007.05.030.

[10]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293. doi: 10.1353/ajm.2003.0040.

[11]

L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space, arXiv:1110.2352v1, Proc. Amer. Math. Soc., 141 (2013), 2793-2798. doi: 10.1090/S0002-9939-2013-11693-X.

[12]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation, Int. Math. Research Notices, (2002), 1979-2005. doi: 10.1155/S1073792802112104.

[13]

L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407-1416.

[14]

L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM. J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.

[15]

M. Panthee, On the ill-posedness result for the BBM equation, Discrete Contin. Dyn. Syst., 30 (2011), 253-259. doi: 10.3934/dcds.2011.30.253.

[16]

N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043-1047. doi: 10.1016/S0764-4442(00)88471-2.

show all references

References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system, Adv. Differential Equations, 11 (2006), 121-166.

[2]

J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations, Discrete Contin. Dyn. Syst., 30 (2011), 851-871. doi: 10.3934/dcds.2011.30.851.

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Royal Soc. London, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[4]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457-510. doi: 10.1098/rsta.1981.0178.

[5]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete and Continuous Dynamical Systems, 23 (2009), 1241-1252. doi: 10.3934/dcds.2009.23.1241.

[6]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations, Disc. Cont. Dynamical Systems, 23 (2009), 1253-1275. doi: 10.3934/dcds.2009.23.1253.

[7]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. New Ser., 3 (1997), 115-159. doi: 10.1007/s000290050008.

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.

[9]

W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term, J. Diff. Equations, 240 (2007), 125-144. doi: 10.1016/j.jde.2007.05.030.

[10]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293. doi: 10.1353/ajm.2003.0040.

[11]

L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space, arXiv:1110.2352v1, Proc. Amer. Math. Soc., 141 (2013), 2793-2798. doi: 10.1090/S0002-9939-2013-11693-X.

[12]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation, Int. Math. Research Notices, (2002), 1979-2005. doi: 10.1155/S1073792802112104.

[13]

L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407-1416.

[14]

L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM. J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.

[15]

M. Panthee, On the ill-posedness result for the BBM equation, Discrete Contin. Dyn. Syst., 30 (2011), 253-259. doi: 10.3934/dcds.2011.30.253.

[16]

N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043-1047. doi: 10.1016/S0764-4442(00)88471-2.

[1]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[2]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[3]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[4]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[5]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[6]

Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158

[7]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[8]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure and Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[9]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[10]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[11]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[12]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[13]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[14]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[15]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[16]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[18]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[19]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations and Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[20]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]