• Previous Article
    Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations
  • DCDS Home
  • This Issue
  • Next Article
    On ill-posedness for the generalized BBM equation
November  2014, 34(11): 4577-4588. doi: 10.3934/dcds.2014.34.4577

Delay-dependent stability criteria for neutral delay differential and difference equations

1. 

Institute of Mathematics, Brno University of Technology, Technická 2, CZ-61669 Brno, Czech Republic, Czech Republic

Received  October 2013 Revised  January 2014 Published  May 2014

This paper discusses asymptotic stability properties of the neutral delay differential equation \begin{eqnarray*} y'(t) = a y (t) + b y ( t - \tau ) + c y'( t - \tau ),       t > 0, \\ \end{eqnarray*} where $a,\,b,\,c$ and $\tau >0$ are real scalars. We consider the exact as well as discretized delay-dependent asymptotic stability regions for this equation and describe them in terms of explicit necessary and sufficient conditions imposed on $a,\,b,\,c$ and $\tau$. Such descriptions enable us to observe some fundamental properties of these stability regions, especially with respect to stability of corresponding numerical formulae. As a consequence of our investigations, we extend existing results on this topic.
Citation: Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577
References:
[1]

Appl. Numer. Math., 24 (1997), 279-293. doi: 10.1016/S0168-9274(97)00026-3.  Google Scholar

[2]

Numer. Math., 52 (1988), 605-619. doi: 10.1007/BF01395814.  Google Scholar

[3]

Oxford University Press, Oxford, 2003. doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[4]

J. Differential Equations, 7 (1970), 175-188. doi: 10.1016/0022-0396(70)90131-2.  Google Scholar

[5]

Numer. Math., 54 (1988), 257-269. doi: 10.1007/BF01396761.  Google Scholar

[6]

IMA J. Numer. Anal., 31 (2011), 1533-1551. doi: 10.1093/imanum/drq021.  Google Scholar

[7]

J. Čermák and J. Hrabalová, On stability regions for some delay differential equations and their discretizations,, Period. Math. Hung., ().   Google Scholar

[8]

J. Difference Equ. Appl., 18 (2012), 1781-1800. doi: 10.1080/10236198.2011.595406.  Google Scholar

[9]

Springer, New York, 2005.  Google Scholar

[10]

Funkcial. Ekvac., 34 (1991), 187-209.  Google Scholar

[11]

Math. Notes, 1 (1967), 715-726.  Google Scholar

[12]

IMA J. Numer. Anal., 18 (1998), 399-418. doi: 10.1093/imanum/18.3.399.  Google Scholar

[13]

SIAM J. Numer. Anal., 39 (2001), 763-783. doi: 10.1137/S0036142900375396.  Google Scholar

[14]

Recent Trends in Numerical Analysis (L. Brugnano and D. Trigiante, eds.), 3 (2001), 175-184.  Google Scholar

[15]

J. London Math. Soc., 25 (1950), 226-232.  Google Scholar

[16]

Numer. Math., 111 (2009), 377-387. doi: 10.1007/s00211-008-0197-z.  Google Scholar

[17]

Appl. Numer. Math., 24 (1997), 295-308. doi: 10.1016/S0168-9274(97)00027-5.  Google Scholar

[18]

Numer. Math., 43 (1984), 389-396. doi: 10.1007/BF01390181.  Google Scholar

[19]

J. Differential Equations, 256 (2014), 2368-2391. doi: 10.1016/j.jde.2014.01.004.  Google Scholar

[20]

Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[21]

Science Press, Beijing, 2005. Google Scholar

[22]

J. Comput. Appl. Math., 71 (1996), 177-190. doi: 10.1016/0377-0427(95)00222-7.  Google Scholar

[23]

Appl. Math. Comput., 212 (2009), 145-152. doi: 10.1016/j.amc.2009.02.010.  Google Scholar

[24]

Differ. Equ. Appl., 3 (2011), 43-55. doi: 10.7153/dea-03-04.  Google Scholar

[25]

Thesis (Ph.D.)–New York University. 1964. 79 pp.  Google Scholar

[26]

J. Math. Sci. (N. Y.), 164 (2010), 659-841. doi: 10.1007/s10958-010-9768-5.  Google Scholar

show all references

References:
[1]

Appl. Numer. Math., 24 (1997), 279-293. doi: 10.1016/S0168-9274(97)00026-3.  Google Scholar

[2]

Numer. Math., 52 (1988), 605-619. doi: 10.1007/BF01395814.  Google Scholar

[3]

Oxford University Press, Oxford, 2003. doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[4]

J. Differential Equations, 7 (1970), 175-188. doi: 10.1016/0022-0396(70)90131-2.  Google Scholar

[5]

Numer. Math., 54 (1988), 257-269. doi: 10.1007/BF01396761.  Google Scholar

[6]

IMA J. Numer. Anal., 31 (2011), 1533-1551. doi: 10.1093/imanum/drq021.  Google Scholar

[7]

J. Čermák and J. Hrabalová, On stability regions for some delay differential equations and their discretizations,, Period. Math. Hung., ().   Google Scholar

[8]

J. Difference Equ. Appl., 18 (2012), 1781-1800. doi: 10.1080/10236198.2011.595406.  Google Scholar

[9]

Springer, New York, 2005.  Google Scholar

[10]

Funkcial. Ekvac., 34 (1991), 187-209.  Google Scholar

[11]

Math. Notes, 1 (1967), 715-726.  Google Scholar

[12]

IMA J. Numer. Anal., 18 (1998), 399-418. doi: 10.1093/imanum/18.3.399.  Google Scholar

[13]

SIAM J. Numer. Anal., 39 (2001), 763-783. doi: 10.1137/S0036142900375396.  Google Scholar

[14]

Recent Trends in Numerical Analysis (L. Brugnano and D. Trigiante, eds.), 3 (2001), 175-184.  Google Scholar

[15]

J. London Math. Soc., 25 (1950), 226-232.  Google Scholar

[16]

Numer. Math., 111 (2009), 377-387. doi: 10.1007/s00211-008-0197-z.  Google Scholar

[17]

Appl. Numer. Math., 24 (1997), 295-308. doi: 10.1016/S0168-9274(97)00027-5.  Google Scholar

[18]

Numer. Math., 43 (1984), 389-396. doi: 10.1007/BF01390181.  Google Scholar

[19]

J. Differential Equations, 256 (2014), 2368-2391. doi: 10.1016/j.jde.2014.01.004.  Google Scholar

[20]

Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[21]

Science Press, Beijing, 2005. Google Scholar

[22]

J. Comput. Appl. Math., 71 (1996), 177-190. doi: 10.1016/0377-0427(95)00222-7.  Google Scholar

[23]

Appl. Math. Comput., 212 (2009), 145-152. doi: 10.1016/j.amc.2009.02.010.  Google Scholar

[24]

Differ. Equ. Appl., 3 (2011), 43-55. doi: 10.7153/dea-03-04.  Google Scholar

[25]

Thesis (Ph.D.)–New York University. 1964. 79 pp.  Google Scholar

[26]

J. Math. Sci. (N. Y.), 164 (2010), 659-841. doi: 10.1007/s10958-010-9768-5.  Google Scholar

[1]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[2]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[3]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[4]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[7]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[8]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[9]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[12]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[13]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[14]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[15]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[16]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[17]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[18]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[19]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[20]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]