Citation: |
[1] |
M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité, Cours Spécialisés 8, Collection SMF, SMF et EDP Sciences, Paris, 2001. |
[2] |
A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems, in Mechanics Day (Waterloo, ON, 1992), vol. 7 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 1996, 5-56. |
[3] |
G. Casale, Morales-Ramis theorems via Malgrange pseudogroup, Annales de l'Institut Fourier, 59 (2009), 2593-2610.doi: 10.5802/aif.2501. |
[4] |
G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials, Annales de l'Institut Fourier, 59 (2009), 2839-2890.doi: 10.5802/aif.2510. |
[5] |
N. V. Grigorenko, Abelian extensions in Picard-Vessiot theory, Mat. Zametki, 17 (1975), 113-117. |
[6] |
J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1975. |
[7] |
E. R. Kolchin, Algebraic groups and algebraic dependence, Amer. J. Math., 90 (1968), 1151-1164.doi: 10.2307/2373294. |
[8] |
A. J. Maciejewski and M. Przybylska, Differential Galois theory and integrability, Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357-1390.doi: 10.1142/S0219887809004272. |
[9] |
J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide, in Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220.doi: 10.1090/conm/509/09980. |
[10] |
J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. Éc. Norm. Supér, 40 (2007), 845-884.doi: 10.1016/j.ansens.2007.09.002. |
[11] |
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2003. |