-
Previous Article
Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity
- DCDS Home
- This Issue
-
Next Article
Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations
Blow-up set for a superlinear heat equation and pointedness of the initial data
1. | Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan |
References:
[1] |
X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, J. Differential Equations, 78 (1989), 160.
doi: 10.1016/0022-0396(89)90081-8. |
[2] |
T. Cheng and G. F. Zheng, Some blow-up problems for a semilinear parabolic equation with a potential,, J. Differential Equations, 244 (2008), 766.
doi: 10.1016/j.jde.2007.11.004. |
[3] |
C. Cortazar, M. Elgueta and J. D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential,, J. Math. Anal. Appl., 335 (2007), 418.
doi: 10.1016/j.jmaa.2007.01.079. |
[4] |
A. Friedman and A. A. Lacey, The blow-up time for solutions of nonlinear heat equations with small diffusion,, SIAM J. Math. Anal., 18 (1987), 711.
doi: 10.1137/0518054. |
[5] |
A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425.
doi: 10.1512/iumj.1985.34.34025. |
[6] |
Y. Fujishima, Location of the blow-up set for a superlinear heat equation with small diffusion,, Differential Integral Equations, 25 (2012), 759.
|
[7] |
Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation with small diffusion,, J. Differential Equations, 249 (2010), 1056.
doi: 10.1016/j.jde.2010.03.028. |
[8] |
Y. Fujishima and K. Ishige, Blow-up for a semilinear parabolic equation with large diffusion on $R^N$,, J. Differential Equations, 250 (2011), 2508.
doi: 10.1016/j.jde.2010.12.008. |
[9] |
Y. Fujishima and K. Ishige, Blow-up for a semilinear parabolic equation with large diffusion on $R^N$. II,, J. Differential Equations, 252 (2012), 1835.
doi: 10.1016/j.jde.2011.08.040. |
[10] |
Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data,, Indiana Univ. Math. J., 61 (2012), 627.
doi: 10.1512/iumj.2012.61.4596. |
[11] |
Y. Fujishima and K. Ishige, Blow-up set for type I blowing up solutions for a semilinear heat equation,, Ann. Inst. H. Poincaré Anal., 31 (2014), 231.
doi: 10.1016/j.anihpc.2013.03.001. |
[12] |
Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations,, Comm. Pure Appl. Math., 42 (1989), 845.
doi: 10.1002/cpa.3160420607. |
[13] |
K. Ishige, Blow-up time and blow-up set of the solutions for semilinear heat equations with large diffusion,, Adv. Differential Equations, 7 (2002), 1003.
|
[14] |
K. Ishige and N. Mizoguchi, Location of blow-up set for a semilinear parabolic equation with large diffusion,, Math. Ann., 327 (2003), 487.
doi: 10.1007/s00208-003-0463-4. |
[15] |
K. Ishige and H. Yagisita, Blow-up problems for a semilinear heat equation with large diffusion,, J. Differential Equations, 212 (2005), 114.
doi: 10.1016/j.jde.2004.10.021. |
[16] |
N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation,, Indiana Univ. Math. J., 50 (2001), 591.
doi: 10.1512/iumj.2001.50.1905. |
[17] |
N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion,, J. Math. Anal. Appl., 261 (2001), 350.
doi: 10.1006/jmaa.2001.7530. |
[18] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).
doi: 10.1007/978-3-7643-8442-5. |
[19] |
S. Sato, Life span of solutions with large initial data for a superlinear heat equation,, J. Math. Anal. Appl. 343 (2008), 343 (2008), 1061.
doi: 10.1016/j.jmaa.2008.02.018. |
[20] |
J. J. L. Velázquez, Higher-dimensional blow-up for semilinear parabolic equations,, Comm. Partial Differential Equations, 17 (1992), 1567.
doi: 10.1080/03605309208820896. |
[21] |
J. J. L. Velázquez, Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation,, Indiana Univ. Math. J., 42 (1993), 445.
doi: 10.1512/iumj.1993.42.42021. |
[22] |
F. B. Weissler, Single point blow-up for a semilinear initial value problem,, J. Differential Equations 55 (1984), 55 (1984), 204.
doi: 10.1016/0022-0396(84)90081-0. |
[23] |
H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion,, J. Math. Soc. Japan, 56 (2004), 993.
doi: 10.2969/jmsj/1190905445. |
[24] |
H. Yagisita, Variable instability of a constant blow-up solution in a nonlinear heat equation,, J. Math. Soc. Japan, 56 (2004), 1007.
doi: 10.2969/jmsj/1190905446. |
[25] |
H. Zaag, On the regularity of the blow-up set for semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 505.
doi: 10.1016/S0294-1449(01)00088-9. |
[26] |
H. Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations,, Comm. Math. Phys., 225 (2002), 523.
doi: 10.1007/s002200100589. |
[27] |
H. Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations,, Mathematics mathematics education (Bethlehem, (2000), 337.
|
[28] |
H. Zaag, Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation,, Duke Math. J., 133 (2006), 499.
doi: 10.1215/S0012-7094-06-13333-1. |
show all references
References:
[1] |
X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, J. Differential Equations, 78 (1989), 160.
doi: 10.1016/0022-0396(89)90081-8. |
[2] |
T. Cheng and G. F. Zheng, Some blow-up problems for a semilinear parabolic equation with a potential,, J. Differential Equations, 244 (2008), 766.
doi: 10.1016/j.jde.2007.11.004. |
[3] |
C. Cortazar, M. Elgueta and J. D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential,, J. Math. Anal. Appl., 335 (2007), 418.
doi: 10.1016/j.jmaa.2007.01.079. |
[4] |
A. Friedman and A. A. Lacey, The blow-up time for solutions of nonlinear heat equations with small diffusion,, SIAM J. Math. Anal., 18 (1987), 711.
doi: 10.1137/0518054. |
[5] |
A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425.
doi: 10.1512/iumj.1985.34.34025. |
[6] |
Y. Fujishima, Location of the blow-up set for a superlinear heat equation with small diffusion,, Differential Integral Equations, 25 (2012), 759.
|
[7] |
Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation with small diffusion,, J. Differential Equations, 249 (2010), 1056.
doi: 10.1016/j.jde.2010.03.028. |
[8] |
Y. Fujishima and K. Ishige, Blow-up for a semilinear parabolic equation with large diffusion on $R^N$,, J. Differential Equations, 250 (2011), 2508.
doi: 10.1016/j.jde.2010.12.008. |
[9] |
Y. Fujishima and K. Ishige, Blow-up for a semilinear parabolic equation with large diffusion on $R^N$. II,, J. Differential Equations, 252 (2012), 1835.
doi: 10.1016/j.jde.2011.08.040. |
[10] |
Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data,, Indiana Univ. Math. J., 61 (2012), 627.
doi: 10.1512/iumj.2012.61.4596. |
[11] |
Y. Fujishima and K. Ishige, Blow-up set for type I blowing up solutions for a semilinear heat equation,, Ann. Inst. H. Poincaré Anal., 31 (2014), 231.
doi: 10.1016/j.anihpc.2013.03.001. |
[12] |
Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations,, Comm. Pure Appl. Math., 42 (1989), 845.
doi: 10.1002/cpa.3160420607. |
[13] |
K. Ishige, Blow-up time and blow-up set of the solutions for semilinear heat equations with large diffusion,, Adv. Differential Equations, 7 (2002), 1003.
|
[14] |
K. Ishige and N. Mizoguchi, Location of blow-up set for a semilinear parabolic equation with large diffusion,, Math. Ann., 327 (2003), 487.
doi: 10.1007/s00208-003-0463-4. |
[15] |
K. Ishige and H. Yagisita, Blow-up problems for a semilinear heat equation with large diffusion,, J. Differential Equations, 212 (2005), 114.
doi: 10.1016/j.jde.2004.10.021. |
[16] |
N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation,, Indiana Univ. Math. J., 50 (2001), 591.
doi: 10.1512/iumj.2001.50.1905. |
[17] |
N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion,, J. Math. Anal. Appl., 261 (2001), 350.
doi: 10.1006/jmaa.2001.7530. |
[18] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).
doi: 10.1007/978-3-7643-8442-5. |
[19] |
S. Sato, Life span of solutions with large initial data for a superlinear heat equation,, J. Math. Anal. Appl. 343 (2008), 343 (2008), 1061.
doi: 10.1016/j.jmaa.2008.02.018. |
[20] |
J. J. L. Velázquez, Higher-dimensional blow-up for semilinear parabolic equations,, Comm. Partial Differential Equations, 17 (1992), 1567.
doi: 10.1080/03605309208820896. |
[21] |
J. J. L. Velázquez, Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation,, Indiana Univ. Math. J., 42 (1993), 445.
doi: 10.1512/iumj.1993.42.42021. |
[22] |
F. B. Weissler, Single point blow-up for a semilinear initial value problem,, J. Differential Equations 55 (1984), 55 (1984), 204.
doi: 10.1016/0022-0396(84)90081-0. |
[23] |
H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion,, J. Math. Soc. Japan, 56 (2004), 993.
doi: 10.2969/jmsj/1190905445. |
[24] |
H. Yagisita, Variable instability of a constant blow-up solution in a nonlinear heat equation,, J. Math. Soc. Japan, 56 (2004), 1007.
doi: 10.2969/jmsj/1190905446. |
[25] |
H. Zaag, On the regularity of the blow-up set for semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 505.
doi: 10.1016/S0294-1449(01)00088-9. |
[26] |
H. Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations,, Comm. Math. Phys., 225 (2002), 523.
doi: 10.1007/s002200100589. |
[27] |
H. Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations,, Mathematics mathematics education (Bethlehem, (2000), 337.
|
[28] |
H. Zaag, Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation,, Duke Math. J., 133 (2006), 499.
doi: 10.1215/S0012-7094-06-13333-1. |
[1] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[2] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[3] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[4] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[5] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[6] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[9] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[10] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[11] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[12] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[13] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[14] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[15] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[16] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[17] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[18] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[19] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[20] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]