-
Previous Article
Supercritical problems in domains with thin toroidal holes
- DCDS Home
- This Issue
-
Next Article
Blow-up set for a superlinear heat equation and pointedness of the initial data
Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity
1. | Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China |
2. | Université Bordeaux 1, Institut de Mathématiques de Bordeaux, F-33405 Talence Cedex, France |
References:
[1] |
H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations,, Comm. Pure. Appl. Math., 64 (2011), 832.
doi: 10.1002/cpa.20351. |
[2] |
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften 343, (2011).
doi: 10.1007/978-3-642-16830-7. |
[3] |
J. Bergh and J. L$\ddoto$fstr$\ddoto$m, Interpolation Spaces. An Introduction,, Grundlehren der mathematischen Wissenschaften 223, (1976).
|
[4] |
R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated-Compactness and Hardy spaces,, J. Math. Pure Appl., 72 (1993), 247.
|
[5] |
R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.
|
[6] |
B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rat. Mech. Anal., 137 (1997), 135.
doi: 10.1007/s002050050025. |
[7] |
G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math., 30 (2009), 607.
doi: 10.1007/s11401-009-0027-3. |
[8] |
J. Huang, Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations,, submit., (). Google Scholar |
[9] |
J. Huang, M. Paicu and P. Zhang, Global solutions to 2-D incompressible inhomogeneous Navier-Stokes system with general velocity,, J. Math. Pures Appl., 100 (2013), 806.
doi: 10.1016/j.matpur.2013.03.003. |
[10] |
O. A. Ladyženskaja and V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids., (Russian) Boundary value problems of mathematical physics, 52 (1975), 52.
|
[11] |
P. L. Lions, Mathematical Topics in Fluid Mechanics., Vol.1 of Oxford Lecture Series in Mathematics and its Applications 3. New York, (1996).
|
[12] |
M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.
doi: 10.1080/03605308608820443. |
[13] |
M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.
doi: 10.1007/s002050050128. |
[14] |
M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbbR^n$,, J. London Math. Soc., 35 (1987), 303.
doi: 10.1112/jlms/s2-35.2.303. |
show all references
References:
[1] |
H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations,, Comm. Pure. Appl. Math., 64 (2011), 832.
doi: 10.1002/cpa.20351. |
[2] |
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften 343, (2011).
doi: 10.1007/978-3-642-16830-7. |
[3] |
J. Bergh and J. L$\ddoto$fstr$\ddoto$m, Interpolation Spaces. An Introduction,, Grundlehren der mathematischen Wissenschaften 223, (1976).
|
[4] |
R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated-Compactness and Hardy spaces,, J. Math. Pure Appl., 72 (1993), 247.
|
[5] |
R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.
|
[6] |
B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rat. Mech. Anal., 137 (1997), 135.
doi: 10.1007/s002050050025. |
[7] |
G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math., 30 (2009), 607.
doi: 10.1007/s11401-009-0027-3. |
[8] |
J. Huang, Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations,, submit., (). Google Scholar |
[9] |
J. Huang, M. Paicu and P. Zhang, Global solutions to 2-D incompressible inhomogeneous Navier-Stokes system with general velocity,, J. Math. Pures Appl., 100 (2013), 806.
doi: 10.1016/j.matpur.2013.03.003. |
[10] |
O. A. Ladyženskaja and V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids., (Russian) Boundary value problems of mathematical physics, 52 (1975), 52.
|
[11] |
P. L. Lions, Mathematical Topics in Fluid Mechanics., Vol.1 of Oxford Lecture Series in Mathematics and its Applications 3. New York, (1996).
|
[12] |
M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.
doi: 10.1080/03605308608820443. |
[13] |
M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.
doi: 10.1007/s002050050128. |
[14] |
M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbbR^n$,, J. London Math. Soc., 35 (1987), 303.
doi: 10.1112/jlms/s2-35.2.303. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[3] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[4] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[5] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[6] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[7] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[8] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[9] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[10] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[11] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[12] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[13] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[14] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[15] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[16] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[17] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[18] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[19] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[20] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]