November  2014, 34(11): 4647-4669. doi: 10.3934/dcds.2014.34.4647

Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity

1. 

Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China

2. 

Université Bordeaux 1, Institut de Mathématiques de Bordeaux, F-33405 Talence Cedex, France

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper, we investigate the time decay behavior to weak solution of 2D incompressible inhomogeneous Navier-Stokes equations. Granted the decay estimates, we gain a global well-posed result of these solutions.
Citation: J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647
References:
[1]

H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations,, Comm. Pure. Appl. Math., 64 (2011), 832.  doi: 10.1002/cpa.20351.  Google Scholar

[2]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften 343, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

J. Bergh and J. L$\ddoto$fstr$\ddoto$m, Interpolation Spaces. An Introduction,, Grundlehren der mathematischen Wissenschaften 223, (1976).   Google Scholar

[4]

R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated-Compactness and Hardy spaces,, J. Math. Pure Appl., 72 (1993), 247.   Google Scholar

[5]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.   Google Scholar

[6]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rat. Mech. Anal., 137 (1997), 135.  doi: 10.1007/s002050050025.  Google Scholar

[7]

G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math., 30 (2009), 607.  doi: 10.1007/s11401-009-0027-3.  Google Scholar

[8]

J. Huang, Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations,, submit., ().   Google Scholar

[9]

J. Huang, M. Paicu and P. Zhang, Global solutions to 2-D incompressible inhomogeneous Navier-Stokes system with general velocity,, J. Math. Pures Appl., 100 (2013), 806.  doi: 10.1016/j.matpur.2013.03.003.  Google Scholar

[10]

O. A. Ladyženskaja and V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids., (Russian) Boundary value problems of mathematical physics, 52 (1975), 52.   Google Scholar

[11]

P. L. Lions, Mathematical Topics in Fluid Mechanics., Vol.1 of Oxford Lecture Series in Mathematics and its Applications 3. New York, (1996).   Google Scholar

[12]

M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[13]

M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.  doi: 10.1007/s002050050128.  Google Scholar

[14]

M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbbR^n$,, J. London Math. Soc., 35 (1987), 303.  doi: 10.1112/jlms/s2-35.2.303.  Google Scholar

show all references

References:
[1]

H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations,, Comm. Pure. Appl. Math., 64 (2011), 832.  doi: 10.1002/cpa.20351.  Google Scholar

[2]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften 343, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

J. Bergh and J. L$\ddoto$fstr$\ddoto$m, Interpolation Spaces. An Introduction,, Grundlehren der mathematischen Wissenschaften 223, (1976).   Google Scholar

[4]

R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated-Compactness and Hardy spaces,, J. Math. Pure Appl., 72 (1993), 247.   Google Scholar

[5]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.   Google Scholar

[6]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rat. Mech. Anal., 137 (1997), 135.  doi: 10.1007/s002050050025.  Google Scholar

[7]

G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math., 30 (2009), 607.  doi: 10.1007/s11401-009-0027-3.  Google Scholar

[8]

J. Huang, Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations,, submit., ().   Google Scholar

[9]

J. Huang, M. Paicu and P. Zhang, Global solutions to 2-D incompressible inhomogeneous Navier-Stokes system with general velocity,, J. Math. Pures Appl., 100 (2013), 806.  doi: 10.1016/j.matpur.2013.03.003.  Google Scholar

[10]

O. A. Ladyženskaja and V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids., (Russian) Boundary value problems of mathematical physics, 52 (1975), 52.   Google Scholar

[11]

P. L. Lions, Mathematical Topics in Fluid Mechanics., Vol.1 of Oxford Lecture Series in Mathematics and its Applications 3. New York, (1996).   Google Scholar

[12]

M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[13]

M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.  doi: 10.1007/s002050050128.  Google Scholar

[14]

M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbbR^n$,, J. London Math. Soc., 35 (1987), 303.  doi: 10.1112/jlms/s2-35.2.303.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[4]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[8]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[9]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[10]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[11]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[12]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[13]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[14]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[15]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[16]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[17]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[18]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[19]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[20]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]