November  2014, 34(11): 4671-4688. doi: 10.3934/dcds.2014.34.4671

Supercritical problems in domains with thin toroidal holes

1. 

Departamento de Matemática, Pontificia Universidad Catóica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile

2. 

Dipartimento SBAI, Università di Roma "La Sapienza", via Antonio Scarpa 16, 00161 Roma

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper we study the Lane-Emden-Fowler equation $$ (P)_ \epsilon \quad \left\{ \begin{aligned} &\Delta u+|u|^{q-2}u=0\ &\hbox{in}\ \mathcal D_ \epsilon,\\ & u=0\ &\hbox{on}\ \partial\mathcal D_ \epsilon.\\ \end{aligned}\right. $$ Here $\mathcal D_ \epsilon=\mathcal D\setminus \left\{x\in \mathcal D\ :\ \mathrm{dist}(x,\Gamma_l)\le \epsilon \right\}$, $\mathcal D$ is a smooth bounded domain in $\mathbb{R}^N$, $\Gamma_l$ is an $l-$dimensional closed manifold such that $\Gamma_l\subset\mathcal D$ with $1\le l\le N-3$ and $q={2(N-l)\over N-l-2} .$ We prove that, under some symmetry assumptions, the number of sign changing solutions to $ (P)_ \epsilon$ increases as $\epsilon$ goes to zero.
Citation: Seunghyeok Kim, Angela Pistoia. Supercritical problems in domains with thin toroidal holes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4671-4688. doi: 10.3934/dcds.2014.34.4671
References:
[1]

N. Ackermann, M. Clápp and A. Pistoia, Boundary clustered layers near the higher critical exponents,, J. Differential Equations, 254 (2013), 4168.  doi: 10.1016/j.jde.2013.02.015.  Google Scholar

[2]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253.  doi: 10.1002/cpa.3160410302.  Google Scholar

[3]

A. Bahri, Y.-Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Diff. Eq., 3 (1995), 67.  doi: 10.1007/BF01190892.  Google Scholar

[4]

T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth,, Calc. Var. Partial Diff. Eq., 26 (2006), 265.  doi: 10.1007/s00526-006-0004-6.  Google Scholar

[5]

M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents,, Calc. Var. Partial Diff. Eq., 48 (2013), 611.  doi: 10.1007/s00526-012-0564-6.  Google Scholar

[6]

M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., ().   Google Scholar

[7]

J. M. Coron, Topologie et cas limite des injections de sobolev,, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209.   Google Scholar

[8]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Diff. Eq., 16 (2003), 113.  doi: 10.1007/s005260100142.  Google Scholar

[9]

M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second critical exponent,, J. Eur. Math. Soc., 12 (2010), 1553.  doi: 10.4171/JEMS/241.  Google Scholar

[10]

M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507.  doi: 10.1016/j.anihpc.2006.03.001.  Google Scholar

[11]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes,, Manuscripta Math, 123 (2007), 493.  doi: 10.1007/s00229-007-0110-6.  Google Scholar

[12]

Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains,, Commun. Partial Differ. Equ., 35 (2010), 1419.  doi: 10.1080/03605302.2010.490286.  Google Scholar

[13]

S. Kim and A. Pistoia, Boundary towers of layers for some supercritical problems,, J. Differential Equations, 255 (2013), 2302.  doi: 10.1016/j.jde.2013.06.017.  Google Scholar

[14]

S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem,, J. London Math. Soc., 88 (2013), 227.  doi: 10.1112/jlms/jdt006.  Google Scholar

[15]

J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations,, Comm. Pure Appl. Math., 28 (1975), 567.  doi: 10.1002/cpa.3160280502.  Google Scholar

[16]

M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains,, J. Math. Pures Appl., 86 (2006), 510.  doi: 10.1016/j.matpur.2006.10.006.  Google Scholar

[17]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains,, J. Math. Pures Appl., 93 (2010), 1.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[18]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains,, J. Func. Anal., 114 (1993), 97.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[19]

D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity,, Diff. Int. Equat., 8 (1995), 577.   Google Scholar

[20]

S. I. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[21]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[22]

S. Yan and J. Wei, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth,, J. Math Pures Appl., 96 (2011), 307.  doi: 10.1016/j.matpur.2011.01.006.  Google Scholar

show all references

References:
[1]

N. Ackermann, M. Clápp and A. Pistoia, Boundary clustered layers near the higher critical exponents,, J. Differential Equations, 254 (2013), 4168.  doi: 10.1016/j.jde.2013.02.015.  Google Scholar

[2]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253.  doi: 10.1002/cpa.3160410302.  Google Scholar

[3]

A. Bahri, Y.-Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Diff. Eq., 3 (1995), 67.  doi: 10.1007/BF01190892.  Google Scholar

[4]

T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth,, Calc. Var. Partial Diff. Eq., 26 (2006), 265.  doi: 10.1007/s00526-006-0004-6.  Google Scholar

[5]

M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents,, Calc. Var. Partial Diff. Eq., 48 (2013), 611.  doi: 10.1007/s00526-012-0564-6.  Google Scholar

[6]

M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., ().   Google Scholar

[7]

J. M. Coron, Topologie et cas limite des injections de sobolev,, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209.   Google Scholar

[8]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Diff. Eq., 16 (2003), 113.  doi: 10.1007/s005260100142.  Google Scholar

[9]

M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second critical exponent,, J. Eur. Math. Soc., 12 (2010), 1553.  doi: 10.4171/JEMS/241.  Google Scholar

[10]

M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507.  doi: 10.1016/j.anihpc.2006.03.001.  Google Scholar

[11]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes,, Manuscripta Math, 123 (2007), 493.  doi: 10.1007/s00229-007-0110-6.  Google Scholar

[12]

Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains,, Commun. Partial Differ. Equ., 35 (2010), 1419.  doi: 10.1080/03605302.2010.490286.  Google Scholar

[13]

S. Kim and A. Pistoia, Boundary towers of layers for some supercritical problems,, J. Differential Equations, 255 (2013), 2302.  doi: 10.1016/j.jde.2013.06.017.  Google Scholar

[14]

S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem,, J. London Math. Soc., 88 (2013), 227.  doi: 10.1112/jlms/jdt006.  Google Scholar

[15]

J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations,, Comm. Pure Appl. Math., 28 (1975), 567.  doi: 10.1002/cpa.3160280502.  Google Scholar

[16]

M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains,, J. Math. Pures Appl., 86 (2006), 510.  doi: 10.1016/j.matpur.2006.10.006.  Google Scholar

[17]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains,, J. Math. Pures Appl., 93 (2010), 1.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[18]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains,, J. Func. Anal., 114 (1993), 97.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[19]

D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity,, Diff. Int. Equat., 8 (1995), 577.   Google Scholar

[20]

S. I. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[21]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[22]

S. Yan and J. Wei, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth,, J. Math Pures Appl., 96 (2011), 307.  doi: 10.1016/j.matpur.2011.01.006.  Google Scholar

[1]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[2]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[5]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[6]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[7]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[8]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[9]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[10]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[11]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[12]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[13]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[14]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[15]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[16]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[17]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[18]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[19]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[20]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]