\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On some Liouville type theorems for the compressible Navier-Stokes equations

Abstract Related Papers Cited by
  • We prove several Liouville type results for stationary solutions of the $d$-dimensional compressible Navier-Stokes equations. In particular, we show that when the dimension $d ≥ 4$, the natural requirements $\rho \in L^{\infty} ( \mathbb{R}^d )$, $v \in \dot{H}^1 (\mathbb{R}^d)$ suffice to guarantee that the solution is trivial. For dimensions $d=2,3$, we assume the extra condition $v \in L^{\frac{3d}{d-1}}(\mathbb R^d)$. This improves a recent result of Chae [1].
    Mathematics Subject Classification: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Chae, Remarks on the liouville type results for the compressible navier-stokes equations in $\mathbbR^N$, Nonlinearity, 25 (2012), 1345-1349.doi: 10.1088/0951-7715/25/5/1345.

    [2]

    E. Feireisl, Dynamics of Viscous Compressible Fluids, volume 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, 2004.

    [3]

    J. Jost, Partial Differential Equations, Graduate Texts in Mathematics, 214. Springer, New York, 2007.doi: 10.1007/978-0-387-49319-0.

    [4]

    P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford University Press, New York, 1998.

    [5]

    A. Novotny and I. Stra, Introduction to the Mathematical Theory of Compressible Flow, volume 27 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, 2004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return