November  2014, 34(11): 4719-4733. doi: 10.3934/dcds.2014.34.4719

On some Liouville type theorems for the compressible Navier-Stokes equations

1. 

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T1Z2, Canada

2. 

Department of Mathematical and Statistical Sciences, University of Alberta, 632 CAB, Edmonton, AB T6G 2G1

Received  February 2013 Revised  February 2014 Published  May 2014

We prove several Liouville type results for stationary solutions of the $d$-dimensional compressible Navier-Stokes equations. In particular, we show that when the dimension $d ≥ 4$, the natural requirements $\rho \in L^{\infty} ( \mathbb{R}^d )$, $v \in \dot{H}^1 (\mathbb{R}^d)$ suffice to guarantee that the solution is trivial. For dimensions $d=2,3$, we assume the extra condition $v \in L^{\frac{3d}{d-1}}(\mathbb R^d)$. This improves a recent result of Chae [1].
Citation: Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719
References:
[1]

D. Chae, Remarks on the liouville type results for the compressible navier-stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345.  doi: 10.1088/0951-7715/25/5/1345.  Google Scholar

[2]

E. Feireisl, Dynamics of Viscous Compressible Fluids,, volume 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004).   Google Scholar

[3]

J. Jost, Partial Differential Equations,, Graduate Texts in Mathematics, (2007).  doi: 10.1007/978-0-387-49319-0.  Google Scholar

[4]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[5]

A. Novotny and I. Stra, Introduction to the Mathematical Theory of Compressible Flow,, volume 27 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004).   Google Scholar

show all references

References:
[1]

D. Chae, Remarks on the liouville type results for the compressible navier-stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345.  doi: 10.1088/0951-7715/25/5/1345.  Google Scholar

[2]

E. Feireisl, Dynamics of Viscous Compressible Fluids,, volume 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004).   Google Scholar

[3]

J. Jost, Partial Differential Equations,, Graduate Texts in Mathematics, (2007).  doi: 10.1007/978-0-387-49319-0.  Google Scholar

[4]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[5]

A. Novotny and I. Stra, Introduction to the Mathematical Theory of Compressible Flow,, volume 27 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004).   Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]