November  2014, 34(11): 4735-4749. doi: 10.3934/dcds.2014.34.4735

Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems

1. 

School of Mathematics, Taiyuan University of Technology, Shanxi, 030024, China

2. 

Department of Mathematics, Shanghai University, Shanghai 200444, China

Received  July 2013 Revised  March 2014 Published  May 2014

In this paper we consider the existence and stability of traveling wave solutions to Cauchy problem of diagonalizable quasilinear hyperbolic systems. Under the appropriate small oscillation assumptions on the initial traveling waves, we derive the stability result of the traveling wave solutions, especially for intermediate traveling waves. As the important examples, we will apply the results to some systems arising in fluid dynamics and elementary particle physics.
Citation: Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735
References:
[1]

B. M. Barbashov, V. V. Nesterenko and A. M. Chervyakov, General solutions of nonlinear equations in the geometric theory of the relativistic string, Commun. Math. Phys., 84 (1982), 471-481. doi: 10.1007/BF01209629.

[2]

G. Carbou, B. Hanouzet and R .Natalini, Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation, J. Differential Equations, 246 (2009), 291-319. doi: 10.1016/j.jde.2008.05.015.

[3]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 21. Springer-Verlag, New York-Heidelberg, 1976.

[4]

W. R. Dai and D. X. Kong, Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy, Chinese Annals of Mathematics, 27B (2006), 263-286.

[5]

W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilnear hyperbolic systems with linear degenerate characteristic fields, J.Differential Equations, 235 (2007), 127-165. doi: 10.1016/j.jde.2006.12.020.

[6]

D. X. Kong, Q. Zhang and Q. Zhou, The dynamics of relativistic strings moving in the Minkowski space $R^{1+n}$, Commun. Math. Phys., 269 (2007), 153-174. doi: 10.1007/s00220-006-0124-z.

[7]

D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems, Comm. Partial Differemtial Equations, 28 (2003), 1203-1220. doi: 10.1081/PDE-120021192.

[8]

D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$, Journal Math. Phy, 47 (2006), 013503,16pp. doi: 10.1063/1.2158435.

[9]

P. D. Lax, Hyperbolic systems of conservation laws $\mbox{I\!I}$, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406.

[10]

T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics, Masson/ John Wiley, Paris, 1994.

[11]

T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, 1985.

[12]

T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. Partial Differential Equations, 19 (1994), 1263-1317. doi: 10.1080/03605309408821055.

[13]

T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Analysis, 28 (1997), 1299-1332. doi: 10.1016/0362-546X(95)00228-N.

[14]

C. M. Liu and P. Qu, Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems, J. Math. Pures Appl., 100 (2013), 34-68. doi: 10.1016/j.matpur.2012.10.011.

[15]

J. L. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Meth. Appl. Sci., 30 (2007), 479-500. doi: 10.1002/mma.797.

[16]

J. L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space, J. Math. Phys., 49 (2008), 043507, 26pp. doi: 10.1063/1.2890393.

[17]

J. L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space, Discrete Contin. Dyn. Syst., 23 (2009), 381-397. doi: 10.3934/dcds.2009.23.381.

[18]

A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables, Volume 53, Applied Mathematical Sciences, Springer, New York, 1984. doi: 10.1007/978-1-4612-1116-7.

[19]

Y. J. Peng and Y. F. Yang, Well-posedness and long-time behavior of Lipschitz solutions to generalized extremal surface equations, Journal of Mathematical Physics, 52 (2011), 053702, 23pp. doi: 10.1063/1.3591133.

[20]

B. L. Rozdestvenkii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translated mathematical monographs 55, American Math. Soc., Providence, RI, 1981.

[21]

Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Analysis, 73 (2010), 600-613. doi: 10.1016/j.na.2010.03.029.

[22]

Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy, Chin.Ann.Math., 25 (2004), 37-56. doi: 10.1142/S0252959904000044.

show all references

References:
[1]

B. M. Barbashov, V. V. Nesterenko and A. M. Chervyakov, General solutions of nonlinear equations in the geometric theory of the relativistic string, Commun. Math. Phys., 84 (1982), 471-481. doi: 10.1007/BF01209629.

[2]

G. Carbou, B. Hanouzet and R .Natalini, Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation, J. Differential Equations, 246 (2009), 291-319. doi: 10.1016/j.jde.2008.05.015.

[3]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 21. Springer-Verlag, New York-Heidelberg, 1976.

[4]

W. R. Dai and D. X. Kong, Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy, Chinese Annals of Mathematics, 27B (2006), 263-286.

[5]

W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilnear hyperbolic systems with linear degenerate characteristic fields, J.Differential Equations, 235 (2007), 127-165. doi: 10.1016/j.jde.2006.12.020.

[6]

D. X. Kong, Q. Zhang and Q. Zhou, The dynamics of relativistic strings moving in the Minkowski space $R^{1+n}$, Commun. Math. Phys., 269 (2007), 153-174. doi: 10.1007/s00220-006-0124-z.

[7]

D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems, Comm. Partial Differemtial Equations, 28 (2003), 1203-1220. doi: 10.1081/PDE-120021192.

[8]

D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$, Journal Math. Phy, 47 (2006), 013503,16pp. doi: 10.1063/1.2158435.

[9]

P. D. Lax, Hyperbolic systems of conservation laws $\mbox{I\!I}$, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406.

[10]

T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics, Masson/ John Wiley, Paris, 1994.

[11]

T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, 1985.

[12]

T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. Partial Differential Equations, 19 (1994), 1263-1317. doi: 10.1080/03605309408821055.

[13]

T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Analysis, 28 (1997), 1299-1332. doi: 10.1016/0362-546X(95)00228-N.

[14]

C. M. Liu and P. Qu, Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems, J. Math. Pures Appl., 100 (2013), 34-68. doi: 10.1016/j.matpur.2012.10.011.

[15]

J. L. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Meth. Appl. Sci., 30 (2007), 479-500. doi: 10.1002/mma.797.

[16]

J. L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space, J. Math. Phys., 49 (2008), 043507, 26pp. doi: 10.1063/1.2890393.

[17]

J. L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space, Discrete Contin. Dyn. Syst., 23 (2009), 381-397. doi: 10.3934/dcds.2009.23.381.

[18]

A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables, Volume 53, Applied Mathematical Sciences, Springer, New York, 1984. doi: 10.1007/978-1-4612-1116-7.

[19]

Y. J. Peng and Y. F. Yang, Well-posedness and long-time behavior of Lipschitz solutions to generalized extremal surface equations, Journal of Mathematical Physics, 52 (2011), 053702, 23pp. doi: 10.1063/1.3591133.

[20]

B. L. Rozdestvenkii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translated mathematical monographs 55, American Math. Soc., Providence, RI, 1981.

[21]

Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Analysis, 73 (2010), 600-613. doi: 10.1016/j.na.2010.03.029.

[22]

Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy, Chin.Ann.Math., 25 (2004), 37-56. doi: 10.1142/S0252959904000044.

[1]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[2]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[3]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[4]

Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683

[5]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[6]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[7]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[8]

El Mustapha Ait Ben Hassi, Mohamed Fadili, Lahcen Maniar. Controllability of a system of degenerate parabolic equations with non-diagonalizable diffusion matrix. Mathematical Control and Related Fields, 2020, 10 (3) : 623-642. doi: 10.3934/mcrf.2020013

[9]

Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

[10]

H. M. Yin. Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields. Communications on Pure and Applied Analysis, 2002, 1 (1) : 127-134. doi: 10.3934/cpaa.2002.1.127

[11]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[12]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[13]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[14]

Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29 (3) : 2325-2358. doi: 10.3934/era.2020118

[16]

Juntang Ding, Chenyu Dong. Blow-up results of the positive solution for a weakly coupled quasilinear parabolic system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4173-4183. doi: 10.3934/dcdsb.2021222

[17]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[18]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[19]

Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033

[20]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]