November  2014, 34(11): 4765-4780. doi: 10.3934/dcds.2014.34.4765

The structure of limit sets for $\mathbb{Z}^d$ actions

1. 

Department of Mathematics, Baylor University, Waco, TX 76798-7328, United States, United States

Received  February 2013 Revised  February 2014 Published  May 2014

Central to the study of $\mathbb{Z}$ actions on compact metric spaces is the $\omega$-limit set, the set of all limit points of a forward orbit. A closed set $K$ is internally chain transitive provided for every $x,y\in K$ there is an $\epsilon$-pseudo-orbit of points from $K$ that starts with $x$ and ends with $y$. It is known in several settings that the property of internal chain transitivity characterizes $\omega$-limit sets. In this paper, we consider actions of $\mathbb{Z}^d$ on compact metric spaces. We give a general definition for shadowing and limit sets in this setting. We characterize limit sets in terms of a more general internal property which we call internal mesh transitivity.
Citation: Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765
References:
[1]

F. Balibrea and C. La Paz, A characterization of the $\omega$-limit sets of interval maps,, Acta Math. Hungar., 88 (2000), 291.  doi: 10.1023/A:1026775906693.  Google Scholar

[2]

A. D. Barwell, C. Good, R. Knight and B. E. Raines, A characterization of $\omega$-limit sets in shift spaces,, Ergodic Theory Dynam. Systems, 30 (2010), 21.  doi: 10.1017/S0143385708001089.  Google Scholar

[3]

A. D. Barwell, A characterization of $\omega$-limit sets of piecewise monotone maps of the interval,, Fund. Math., 207 (2010), 161.  doi: 10.4064/fm207-2-4.  Google Scholar

[4]

A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets of topologically hyperbolic spaces,, Discrete Contin. Dyn. Syst., 33 (2013), 1819.  doi: 10.3934/dcds.2013.33.1819.  Google Scholar

[5]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, American Mathematical Society, (1955).   Google Scholar

[6]

M. W. Hirsch, H.L. Smith and X. Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dynam. Differential Equations, 13 (2001), 107.  doi: 10.1023/A:1009044515567.  Google Scholar

[7]

M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems,, Invent. Math., 176 (2009), 131.  doi: 10.1007/s00222-008-0161-7.  Google Scholar

[8]

M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type,, Ann. of Math. (2), 171 (2010), 2011.  doi: 10.4007/annals.2010.171.2011.  Google Scholar

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).   Google Scholar

[10]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[11]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems,, Discrete Contin. Dyn. Syst., 20 (2008), 1039.  doi: 10.3934/dcds.2008.20.1039.  Google Scholar

[12]

P. Oprocha, Shadowing in multi-dimensional shift spaces,, Colloq. Math., 110 (2008), 451.  doi: 10.4064/cm110-2-8.  Google Scholar

[13]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

show all references

References:
[1]

F. Balibrea and C. La Paz, A characterization of the $\omega$-limit sets of interval maps,, Acta Math. Hungar., 88 (2000), 291.  doi: 10.1023/A:1026775906693.  Google Scholar

[2]

A. D. Barwell, C. Good, R. Knight and B. E. Raines, A characterization of $\omega$-limit sets in shift spaces,, Ergodic Theory Dynam. Systems, 30 (2010), 21.  doi: 10.1017/S0143385708001089.  Google Scholar

[3]

A. D. Barwell, A characterization of $\omega$-limit sets of piecewise monotone maps of the interval,, Fund. Math., 207 (2010), 161.  doi: 10.4064/fm207-2-4.  Google Scholar

[4]

A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets of topologically hyperbolic spaces,, Discrete Contin. Dyn. Syst., 33 (2013), 1819.  doi: 10.3934/dcds.2013.33.1819.  Google Scholar

[5]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, American Mathematical Society, (1955).   Google Scholar

[6]

M. W. Hirsch, H.L. Smith and X. Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dynam. Differential Equations, 13 (2001), 107.  doi: 10.1023/A:1009044515567.  Google Scholar

[7]

M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems,, Invent. Math., 176 (2009), 131.  doi: 10.1007/s00222-008-0161-7.  Google Scholar

[8]

M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type,, Ann. of Math. (2), 171 (2010), 2011.  doi: 10.4007/annals.2010.171.2011.  Google Scholar

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).   Google Scholar

[10]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[11]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems,, Discrete Contin. Dyn. Syst., 20 (2008), 1039.  doi: 10.3934/dcds.2008.20.1039.  Google Scholar

[12]

P. Oprocha, Shadowing in multi-dimensional shift spaces,, Colloq. Math., 110 (2008), 451.  doi: 10.4064/cm110-2-8.  Google Scholar

[13]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[1]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[4]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[5]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[6]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[7]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[8]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[9]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[10]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[11]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[12]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[13]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[14]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[15]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[16]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[17]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[18]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[19]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[20]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]