Advanced Search
Article Contents
Article Contents

The structure of limit sets for $\mathbb{Z}^d$ actions

Abstract Related Papers Cited by
  • Central to the study of $\mathbb{Z}$ actions on compact metric spaces is the $\omega$-limit set, the set of all limit points of a forward orbit. A closed set $K$ is internally chain transitive provided for every $x,y\in K$ there is an $\epsilon$-pseudo-orbit of points from $K$ that starts with $x$ and ends with $y$. It is known in several settings that the property of internal chain transitivity characterizes $\omega$-limit sets. In this paper, we consider actions of $\mathbb{Z}^d$ on compact metric spaces. We give a general definition for shadowing and limit sets in this setting. We characterize limit sets in terms of a more general internal property which we call internal mesh transitivity.
    Mathematics Subject Classification: Primary: 37B50, 37B10, 37B20; Secondary: 54H20.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Balibrea and C. La Paz, A characterization of the $\omega$-limit sets of interval maps, Acta Math. Hungar., 88 (2000), 291-300.doi: 10.1023/A:1026775906693.


    A. D. Barwell, C. Good, R. Knight and B. E. Raines, A characterization of $\omega$-limit sets in shift spaces, Ergodic Theory Dynam. Systems, 30 (2010), 21-31.doi: 10.1017/S0143385708001089.


    A. D. Barwell, A characterization of $\omega$-limit sets of piecewise monotone maps of the interval, Fund. Math., 207 (2010), 161-174.doi: 10.4064/fm207-2-4.


    A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets of topologically hyperbolic spaces, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.doi: 10.3934/dcds.2013.33.1819.


    W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, American Mathematical Society, Providence, R. I., 1955.


    M. W. Hirsch, H.L. Smith and X. Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.doi: 10.1023/A:1009044515567.


    M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Invent. Math., 176 (2009), 131-167.doi: 10.1007/s00222-008-0161-7.


    M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math. (2), 171 (2010), 2011-2038.doi: 10.4007/annals.2010.171.2011.


    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.


    D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511626302.


    P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst., 20 (2008), 1039-1056.doi: 10.3934/dcds.2008.20.1039.


    P. Oprocha, Shadowing in multi-dimensional shift spaces, Colloq. Math., 110 (2008), 451-460.doi: 10.4064/cm110-2-8.


    P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

  • 加载中

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint