-
Previous Article
Substitutions, tiling dynamical systems and minimal self-joinings
- DCDS Home
- This Issue
-
Next Article
Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers
Linearised higher variational equations
1. | Department of Mathematics, University of Portsmouth, Lion Gate Bldg, Lion Terrace, Portsmouth PO1 3HF, United Kingdom |
References:
[1] |
M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,, A Wiley-Interscience Publication, (1984).
|
[2] |
A. Aparicio-Monforte, Méthodes Effectives Pour L'intégrabilité des Systèmes Dynamiques,, Ph.D. thesis, (2010). Google Scholar |
[3] |
A. Aparicio Monforte and J.-A. Weil, A reduction method for higher order variational equations of Hamiltonian systems,, Symmetries and related topics in differential and difference equations, 549 (2011), 1.
doi: 10.1090/conm/549/10850. |
[4] |
_______ and _______, A reduced form for linear differential systems and its application to integrability of Hamiltonian systems},, J. Symbolic Comput., 47 (2012), 192.
doi: 10.1016/j.jsc.2011.09.011. |
[5] |
A. Aparicio-Monforte, M. Barkatou, S. Simon and J.-A. Weil, Formal first integrals along solutions of differential systems I,, ISSAC 2011 - Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, (2011), 19.
doi: 10.1145/1993886.1993896. |
[6] |
M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés, (2001).
|
[7] |
M. Barkatou, On rational solutions of systems of linear differential equations,, J. Symbolic Comput., 28 (1999), 547.
doi: 10.1006/jsco.1999.0314. |
[8] |
U. Bekbaev, A matrix representation of composition of polynomial maps,, , (). Google Scholar |
[9] |
________, A radius of absolute convergence for power series in many variables,, , (). Google Scholar |
[10] |
________, Matrix representations for symmetric and antisymmetric multi-linear maps,, , (). Google Scholar |
[11] |
________, An inversion formula for multivariate power series,, , (). Google Scholar |
[12] |
E. T. Bell, Exponential numbers,, Amer. Math. Monthly, 41 (1934), 411.
doi: 10.2307/2300300. |
[13] |
A. Blokhuis and J. J. Seidel, An introduction to multilinear algebra and some applications,, Philips J. Res., 39 (1984), 111.
|
[14] |
H. Cartan, Calcul Différentiel,, Hermann, (1967).
|
[15] |
J. Casasayas, A. Nunes and N. B. Tufillaro, Swinging Atwood's machine: Integrability and dynamics,, J. Phys., 51 (1990), 1693.
doi: 10.1051/jphys:0199000510160169300. |
[16] |
W. Fulton and J. Harris, Representation Theory,, Graduate Texts in Mathematics, (1991).
doi: 10.1007/978-1-4612-0979-9. |
[17] |
I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants,, Modern Birkhäuser Classics, (2008).
|
[18] |
S. Lang, Algebra,, third ed., (2002).
doi: 10.1007/978-1-4613-0041-0. |
[19] |
K. Makino and M. Berz, Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by preconditioning,, Int. J. Differ. Equ. Appl., 10 (2005), 353.
|
[20] |
R. Martínez and C. Simó, Non-integrability of the degenerate cases of the swinging Atwood's machine using higher order variational equations,, Discrete Contin. Dyn. Syst., 29 (2011), 1.
doi: 10.3934/dcds.2011.29.1. |
[21] |
_______ and _______, Non-integrability of Hamiltonian systems through high order variational equations: summary of results and examples,, Regul. Chaotic Dyn., 14 (2009), 323.
doi: 10.1134/S1560354709030010. |
[22] |
J. J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems,, Progress in Mathematics, (1999).
|
[23] |
J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems. I,, Methods Appl. Anal., 8 (2001), 33.
|
[24] |
J. J. Morales-Ruiz, J.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. École Norm. Sup. (4), 40 (2007), 845.
doi: 10.1016/j.ansens.2007.09.002. |
[25] |
J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergodic Theory Dynam. Systems, 25 (2005), 1237.
doi: 10.1017/S0143385704001038. |
[26] |
O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon and J.-A. Weil, Swinging Atwood machine: Experimental and numerical results, and a theoretical study,, Phys. D, 239 (2010), 1067.
doi: 10.1016/j.physd.2010.02.017. |
[27] |
S. Ramanujan, Notebooks,, (2 volumes) Tata Institute of Fundamental Research, (1957).
|
[28] |
S. Simon, Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian,, Journal of Nonlinear Mathematical Physics, 21 (2014), 1.
doi: 10.1080/14029251.2014.894710. |
[29] |
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2003).
|
[30] |
N. B. Tufillaro, Integrable motion of a swinging Atwood's machine,, Amer. J. Phys., 54 (1986), 142.
doi: 10.1119/1.14710. |
[31] |
S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. I,, Funktsional. Anal. i Prilozhen, 16 (1982), 30.
|
[32] |
H. Zoladek, The Monodromy Group,, Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series) 67, 67 (2006).
|
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,, A Wiley-Interscience Publication, (1984).
|
[2] |
A. Aparicio-Monforte, Méthodes Effectives Pour L'intégrabilité des Systèmes Dynamiques,, Ph.D. thesis, (2010). Google Scholar |
[3] |
A. Aparicio Monforte and J.-A. Weil, A reduction method for higher order variational equations of Hamiltonian systems,, Symmetries and related topics in differential and difference equations, 549 (2011), 1.
doi: 10.1090/conm/549/10850. |
[4] |
_______ and _______, A reduced form for linear differential systems and its application to integrability of Hamiltonian systems},, J. Symbolic Comput., 47 (2012), 192.
doi: 10.1016/j.jsc.2011.09.011. |
[5] |
A. Aparicio-Monforte, M. Barkatou, S. Simon and J.-A. Weil, Formal first integrals along solutions of differential systems I,, ISSAC 2011 - Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, (2011), 19.
doi: 10.1145/1993886.1993896. |
[6] |
M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés, (2001).
|
[7] |
M. Barkatou, On rational solutions of systems of linear differential equations,, J. Symbolic Comput., 28 (1999), 547.
doi: 10.1006/jsco.1999.0314. |
[8] |
U. Bekbaev, A matrix representation of composition of polynomial maps,, , (). Google Scholar |
[9] |
________, A radius of absolute convergence for power series in many variables,, , (). Google Scholar |
[10] |
________, Matrix representations for symmetric and antisymmetric multi-linear maps,, , (). Google Scholar |
[11] |
________, An inversion formula for multivariate power series,, , (). Google Scholar |
[12] |
E. T. Bell, Exponential numbers,, Amer. Math. Monthly, 41 (1934), 411.
doi: 10.2307/2300300. |
[13] |
A. Blokhuis and J. J. Seidel, An introduction to multilinear algebra and some applications,, Philips J. Res., 39 (1984), 111.
|
[14] |
H. Cartan, Calcul Différentiel,, Hermann, (1967).
|
[15] |
J. Casasayas, A. Nunes and N. B. Tufillaro, Swinging Atwood's machine: Integrability and dynamics,, J. Phys., 51 (1990), 1693.
doi: 10.1051/jphys:0199000510160169300. |
[16] |
W. Fulton and J. Harris, Representation Theory,, Graduate Texts in Mathematics, (1991).
doi: 10.1007/978-1-4612-0979-9. |
[17] |
I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants,, Modern Birkhäuser Classics, (2008).
|
[18] |
S. Lang, Algebra,, third ed., (2002).
doi: 10.1007/978-1-4613-0041-0. |
[19] |
K. Makino and M. Berz, Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by preconditioning,, Int. J. Differ. Equ. Appl., 10 (2005), 353.
|
[20] |
R. Martínez and C. Simó, Non-integrability of the degenerate cases of the swinging Atwood's machine using higher order variational equations,, Discrete Contin. Dyn. Syst., 29 (2011), 1.
doi: 10.3934/dcds.2011.29.1. |
[21] |
_______ and _______, Non-integrability of Hamiltonian systems through high order variational equations: summary of results and examples,, Regul. Chaotic Dyn., 14 (2009), 323.
doi: 10.1134/S1560354709030010. |
[22] |
J. J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems,, Progress in Mathematics, (1999).
|
[23] |
J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems. I,, Methods Appl. Anal., 8 (2001), 33.
|
[24] |
J. J. Morales-Ruiz, J.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. École Norm. Sup. (4), 40 (2007), 845.
doi: 10.1016/j.ansens.2007.09.002. |
[25] |
J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergodic Theory Dynam. Systems, 25 (2005), 1237.
doi: 10.1017/S0143385704001038. |
[26] |
O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon and J.-A. Weil, Swinging Atwood machine: Experimental and numerical results, and a theoretical study,, Phys. D, 239 (2010), 1067.
doi: 10.1016/j.physd.2010.02.017. |
[27] |
S. Ramanujan, Notebooks,, (2 volumes) Tata Institute of Fundamental Research, (1957).
|
[28] |
S. Simon, Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian,, Journal of Nonlinear Mathematical Physics, 21 (2014), 1.
doi: 10.1080/14029251.2014.894710. |
[29] |
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2003).
|
[30] |
N. B. Tufillaro, Integrable motion of a swinging Atwood's machine,, Amer. J. Phys., 54 (1986), 142.
doi: 10.1119/1.14710. |
[31] |
S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. I,, Funktsional. Anal. i Prilozhen, 16 (1982), 30.
|
[32] |
H. Zoladek, The Monodromy Group,, Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series) 67, 67 (2006).
|
[1] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[2] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[3] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[4] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[5] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[6] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[7] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[8] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[9] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[10] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[11] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[12] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[13] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[14] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[15] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
[16] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[17] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[18] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[19] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[20] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]