-
Previous Article
A new proof of Franks' lemma for geodesic flows
- DCDS Home
- This Issue
-
Next Article
Linearised higher variational equations
Substitutions, tiling dynamical systems and minimal self-joinings
1. | Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 7610001, Israel |
References:
[1] |
D. Berend and C. Radin, Are there chaotic tilings? Comm. Math. Phys., 152 (1993), 215-219.
doi: 10.1007/BF02098297. |
[2] |
A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces, Ergodic Theory Dynamical Systems, 23 (2003), 1043-1057.
doi: 10.1017/S0143385702001633. |
[3] |
F. M. Dekking and M. Keane, Mixing properties of substitutions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 42 (1978), 23-33.
doi: 10.1007/BF00534205. |
[4] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. |
[5] |
E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101. American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[6] |
E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings, Israel J. Math., 78 (1992), 131-142.
doi: 10.1007/BF02801575. |
[7] |
K. Jacobs and M. Keane, $0-1$ Sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123-131.
doi: 10.1007/BF00537017. |
[8] |
A. del Junco and K. Park, An example of a measure-preserving flow with minimal self-joinings,, J. d'Analyse Math., 42 (): 199.
doi: 10.1007/BF02786879. |
[9] |
A. del Junco, M. Rahe and L. Swanson, Chacon's automorphism has minimal self joinins, J. d'Analyse Math., 37 (1980), 276-284.
doi: 10.1007/BF02797688. |
[10] |
A. del Junco and D. J. Rudolph, A rank one, rigid, simple, prime map, Ergodic Theory and Dynamical Systems, 7 (1987), 229-247.
doi: 10.1017/S0143385700003977. |
[11] |
S. Kakutani, Strictly ergodic symbolic dynamical systems, in Proceedings of 6th Berkeley Symposium on Mathematical Statistics and Probability. (eds. L. M. LeCam, J. Neyman, and E. L. Scott) University of California Press, Berkeley, (1972), 319-326. |
[12] |
A. B. Katok, Ya. G. Sinai and A. M. Stepin, Theory of dynamical systems and general transformation groups with invariant measure, Mathematical analysis, 13 (1975), 129-262.
doi: 10.1007/BF01223133. |
[13] |
J. King, The commutant is the weak closure of the powers, for rank one transformations, Ergodic Theory and Dynamical Systems, 6 (1986), 363-384.
doi: 10.1017/S0143385700003552. |
[14] |
J. King, Ergodic properties where order 4 implies infinite order, Israel J. Math., 80 (1992), 65-86.
doi: 10.1007/BF02808154. |
[15] |
J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc., 58, (1952), 116-136.
doi: 10.1090/S0002-9904-1952-09580-X. |
[16] |
K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press, Cambridge, 1983. |
[17] |
M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, $2^{nd}$ edition. Lecture Notes in Mathematics, 1294. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-11212-6. |
[18] |
E. A. Robinson, Symbolic dynamics and tilings of $\mathbbR^d$, Symbolic dynamics and its applications, in Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, (2004), 81-119.
doi: 10.1090/psapm/060/2078847. |
[19] |
D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. d'Analyse Math., 35 (1979), 97-122.
doi: 10.1007/BF02791063. |
[20] |
D. J. Rudolph, Fundamentals of measurable dynamics - Ergodic theory on Lebesque spaces, Oxford University Press, 1990. |
[21] |
V. V. Ryzhikov, Self-joinings of commutative actions with an invariant measure, Mat. Zametki, 83 (2008), 723-726.
doi: 10.1134/S0001434608050179. |
[22] |
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory and Dynamical Systems, 17 (1997), 695-738.
doi: 10.1017/S0143385797084988. |
show all references
References:
[1] |
D. Berend and C. Radin, Are there chaotic tilings? Comm. Math. Phys., 152 (1993), 215-219.
doi: 10.1007/BF02098297. |
[2] |
A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces, Ergodic Theory Dynamical Systems, 23 (2003), 1043-1057.
doi: 10.1017/S0143385702001633. |
[3] |
F. M. Dekking and M. Keane, Mixing properties of substitutions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 42 (1978), 23-33.
doi: 10.1007/BF00534205. |
[4] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. |
[5] |
E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101. American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[6] |
E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings, Israel J. Math., 78 (1992), 131-142.
doi: 10.1007/BF02801575. |
[7] |
K. Jacobs and M. Keane, $0-1$ Sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123-131.
doi: 10.1007/BF00537017. |
[8] |
A. del Junco and K. Park, An example of a measure-preserving flow with minimal self-joinings,, J. d'Analyse Math., 42 (): 199.
doi: 10.1007/BF02786879. |
[9] |
A. del Junco, M. Rahe and L. Swanson, Chacon's automorphism has minimal self joinins, J. d'Analyse Math., 37 (1980), 276-284.
doi: 10.1007/BF02797688. |
[10] |
A. del Junco and D. J. Rudolph, A rank one, rigid, simple, prime map, Ergodic Theory and Dynamical Systems, 7 (1987), 229-247.
doi: 10.1017/S0143385700003977. |
[11] |
S. Kakutani, Strictly ergodic symbolic dynamical systems, in Proceedings of 6th Berkeley Symposium on Mathematical Statistics and Probability. (eds. L. M. LeCam, J. Neyman, and E. L. Scott) University of California Press, Berkeley, (1972), 319-326. |
[12] |
A. B. Katok, Ya. G. Sinai and A. M. Stepin, Theory of dynamical systems and general transformation groups with invariant measure, Mathematical analysis, 13 (1975), 129-262.
doi: 10.1007/BF01223133. |
[13] |
J. King, The commutant is the weak closure of the powers, for rank one transformations, Ergodic Theory and Dynamical Systems, 6 (1986), 363-384.
doi: 10.1017/S0143385700003552. |
[14] |
J. King, Ergodic properties where order 4 implies infinite order, Israel J. Math., 80 (1992), 65-86.
doi: 10.1007/BF02808154. |
[15] |
J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc., 58, (1952), 116-136.
doi: 10.1090/S0002-9904-1952-09580-X. |
[16] |
K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press, Cambridge, 1983. |
[17] |
M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, $2^{nd}$ edition. Lecture Notes in Mathematics, 1294. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-11212-6. |
[18] |
E. A. Robinson, Symbolic dynamics and tilings of $\mathbbR^d$, Symbolic dynamics and its applications, in Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, (2004), 81-119.
doi: 10.1090/psapm/060/2078847. |
[19] |
D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. d'Analyse Math., 35 (1979), 97-122.
doi: 10.1007/BF02791063. |
[20] |
D. J. Rudolph, Fundamentals of measurable dynamics - Ergodic theory on Lebesque spaces, Oxford University Press, 1990. |
[21] |
V. V. Ryzhikov, Self-joinings of commutative actions with an invariant measure, Mat. Zametki, 83 (2008), 723-726.
doi: 10.1134/S0001434608050179. |
[22] |
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory and Dynamical Systems, 17 (1997), 695-738.
doi: 10.1017/S0143385797084988. |
[1] |
Jon Chaika, Bryna Kra. A prime system with many self-joinings. Journal of Modern Dynamics, 2021, 17: 213-265. doi: 10.3934/jmd.2021007 |
[2] |
Arnaud Goullet, Ian Glasgow, Nadine Aubry. Dynamics of microfluidic mixing using time pulsing. Conference Publications, 2005, 2005 (Special) : 327-336. doi: 10.3934/proc.2005.2005.327 |
[3] |
Yang Cao, Song Shao. Topological mild mixing of all orders along polynomials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1163-1184. doi: 10.3934/dcds.2021150 |
[4] |
Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657 |
[5] |
Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691 |
[6] |
Jean René Chazottes, F. Durand. Local rates of Poincaré recurrence for rotations and weak mixing. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 175-183. doi: 10.3934/dcds.2005.12.175 |
[7] |
Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33 |
[8] |
Ethan M. Ackelsberg. Rigidity, weak mixing, and recurrence in abelian groups. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1669-1705. doi: 10.3934/dcds.2021168 |
[9] |
Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315 |
[10] |
Anthony Quas, Terry Soo. Weak mixing suspension flows over shifts of finite type are universal. Journal of Modern Dynamics, 2012, 6 (4) : 427-449. doi: 10.3934/jmd.2012.6.427 |
[11] |
Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35 |
[12] |
Krzysztof Frączek, Mariusz Lemańczyk. Ratner's property and mild mixing for special flows over two-dimensional rotations. Journal of Modern Dynamics, 2010, 4 (4) : 609-635. doi: 10.3934/jmd.2010.4.609 |
[13] |
David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287 |
[14] |
Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511 |
[15] |
Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579 |
[16] |
Marcy Barge, Sonja Štimac, R. F. Williams. Pure discrete spectrum in substitution tiling spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 579-597. doi: 10.3934/dcds.2013.33.579 |
[17] |
Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001 |
[18] |
Marcy Barge. Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1159-1173. doi: 10.3934/dcds.2016.36.1159 |
[19] |
Jeanette Olli. Endomorphisms of Sturmian systems and the discrete chair substitution tiling system. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4173-4186. doi: 10.3934/dcds.2013.33.4173 |
[20] |
Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]