November  2014, 34(11): 4855-4874. doi: 10.3934/dcds.2014.34.4855

Substitutions, tiling dynamical systems and minimal self-joinings

1. 

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 7610001, Israel

Received  September 2013 Revised  March 2014 Published  May 2014

We investigate substitution subshifts and tiling dynamical systems arising from the substitutions (1) $\theta: 0 \rightarrow 001, 1 \rightarrow 11001$ and (2) $\eta: 0 \rightarrow 001, 1 \rightarrow 11100$. We show that the substitution subshifts arising from $\theta$ and $\eta$ have minimal self-joinings and are mildly mixing. We also give a criterion for 1-dimensional tiling systems arising from $\theta$ or $\eta$ to have minimal self-joinings. We apply this to obtain examples of mildly mixing 1-dimensional tiling systems.
Citation: Younghwan Son. Substitutions, tiling dynamical systems and minimal self-joinings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4855-4874. doi: 10.3934/dcds.2014.34.4855
References:
[1]

D. Berend and C. Radin, Are there chaotic tilings?, Comm. Math. Phys., 152 (1993), 215.  doi: 10.1007/BF02098297.  Google Scholar

[2]

A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces,, Ergodic Theory Dynamical Systems, 23 (2003), 1043.  doi: 10.1017/S0143385702001633.  Google Scholar

[3]

F. M. Dekking and M. Keane, Mixing properties of substitutions,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 42 (1978), 23.  doi: 10.1007/BF00534205.  Google Scholar

[4]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[5]

E. Glasner, Ergodic Theory Via Joinings,, Mathematical Surveys and Monographs, (2003).  doi: 10.1090/surv/101.  Google Scholar

[6]

E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings,, Israel J. Math., 78 (1992), 131.  doi: 10.1007/BF02801575.  Google Scholar

[7]

K. Jacobs and M. Keane, $0-1$ Sequences of Toeplitz type,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123.  doi: 10.1007/BF00537017.  Google Scholar

[8]

A. del Junco and K. Park, An example of a measure-preserving flow with minimal self-joinings,, J. d'Analyse Math., 42 (): 199.  doi: 10.1007/BF02786879.  Google Scholar

[9]

A. del Junco, M. Rahe and L. Swanson, Chacon's automorphism has minimal self joinins,, J. d'Analyse Math., 37 (1980), 276.  doi: 10.1007/BF02797688.  Google Scholar

[10]

A. del Junco and D. J. Rudolph, A rank one, rigid, simple, prime map,, Ergodic Theory and Dynamical Systems, 7 (1987), 229.  doi: 10.1017/S0143385700003977.  Google Scholar

[11]

S. Kakutani, Strictly ergodic symbolic dynamical systems,, in Proceedings of 6th Berkeley Symposium on Mathematical Statistics and Probability. (eds. L. M. LeCam, (1972), 319.   Google Scholar

[12]

A. B. Katok, Ya. G. Sinai and A. M. Stepin, Theory of dynamical systems and general transformation groups with invariant measure,, Mathematical analysis, 13 (1975), 129.  doi: 10.1007/BF01223133.  Google Scholar

[13]

J. King, The commutant is the weak closure of the powers, for rank one transformations,, Ergodic Theory and Dynamical Systems, 6 (1986), 363.  doi: 10.1017/S0143385700003552.  Google Scholar

[14]

J. King, Ergodic properties where order 4 implies infinite order,, Israel J. Math., 80 (1992), 65.  doi: 10.1007/BF02808154.  Google Scholar

[15]

J. C. Oxtoby, Ergodic sets,, Bull. Amer. Math. Soc., 58 (1952), 116.  doi: 10.1090/S0002-9904-1952-09580-X.  Google Scholar

[16]

K. Petersen, Ergodic Theory,, Cambridge Studies in Advanced Mathematics, (1983).   Google Scholar

[17]

M. Queffélec, Substitution Dynamical Systems - Spectral Analysis,, $2^{nd}$ edition. Lecture Notes in Mathematics, (1294).  doi: 10.1007/978-3-642-11212-6.  Google Scholar

[18]

E. A. Robinson, Symbolic dynamics and tilings of $\mathbbR^d$, Symbolic dynamics and its applications,, in Proc. Sympos. Appl. Math., 60 (2004), 81.  doi: 10.1090/psapm/060/2078847.  Google Scholar

[19]

D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications,, J. d'Analyse Math., 35 (1979), 97.  doi: 10.1007/BF02791063.  Google Scholar

[20]

D. J. Rudolph, Fundamentals of measurable dynamics - Ergodic theory on Lebesque spaces,, Oxford University Press, (1990).   Google Scholar

[21]

V. V. Ryzhikov, Self-joinings of commutative actions with an invariant measure,, Mat. Zametki, 83 (2008), 723.  doi: 10.1134/S0001434608050179.  Google Scholar

[22]

B. Solomyak, Dynamics of self-similar tilings,, Ergodic Theory and Dynamical Systems, 17 (1997), 695.  doi: 10.1017/S0143385797084988.  Google Scholar

show all references

References:
[1]

D. Berend and C. Radin, Are there chaotic tilings?, Comm. Math. Phys., 152 (1993), 215.  doi: 10.1007/BF02098297.  Google Scholar

[2]

A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces,, Ergodic Theory Dynamical Systems, 23 (2003), 1043.  doi: 10.1017/S0143385702001633.  Google Scholar

[3]

F. M. Dekking and M. Keane, Mixing properties of substitutions,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 42 (1978), 23.  doi: 10.1007/BF00534205.  Google Scholar

[4]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[5]

E. Glasner, Ergodic Theory Via Joinings,, Mathematical Surveys and Monographs, (2003).  doi: 10.1090/surv/101.  Google Scholar

[6]

E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings,, Israel J. Math., 78 (1992), 131.  doi: 10.1007/BF02801575.  Google Scholar

[7]

K. Jacobs and M. Keane, $0-1$ Sequences of Toeplitz type,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123.  doi: 10.1007/BF00537017.  Google Scholar

[8]

A. del Junco and K. Park, An example of a measure-preserving flow with minimal self-joinings,, J. d'Analyse Math., 42 (): 199.  doi: 10.1007/BF02786879.  Google Scholar

[9]

A. del Junco, M. Rahe and L. Swanson, Chacon's automorphism has minimal self joinins,, J. d'Analyse Math., 37 (1980), 276.  doi: 10.1007/BF02797688.  Google Scholar

[10]

A. del Junco and D. J. Rudolph, A rank one, rigid, simple, prime map,, Ergodic Theory and Dynamical Systems, 7 (1987), 229.  doi: 10.1017/S0143385700003977.  Google Scholar

[11]

S. Kakutani, Strictly ergodic symbolic dynamical systems,, in Proceedings of 6th Berkeley Symposium on Mathematical Statistics and Probability. (eds. L. M. LeCam, (1972), 319.   Google Scholar

[12]

A. B. Katok, Ya. G. Sinai and A. M. Stepin, Theory of dynamical systems and general transformation groups with invariant measure,, Mathematical analysis, 13 (1975), 129.  doi: 10.1007/BF01223133.  Google Scholar

[13]

J. King, The commutant is the weak closure of the powers, for rank one transformations,, Ergodic Theory and Dynamical Systems, 6 (1986), 363.  doi: 10.1017/S0143385700003552.  Google Scholar

[14]

J. King, Ergodic properties where order 4 implies infinite order,, Israel J. Math., 80 (1992), 65.  doi: 10.1007/BF02808154.  Google Scholar

[15]

J. C. Oxtoby, Ergodic sets,, Bull. Amer. Math. Soc., 58 (1952), 116.  doi: 10.1090/S0002-9904-1952-09580-X.  Google Scholar

[16]

K. Petersen, Ergodic Theory,, Cambridge Studies in Advanced Mathematics, (1983).   Google Scholar

[17]

M. Queffélec, Substitution Dynamical Systems - Spectral Analysis,, $2^{nd}$ edition. Lecture Notes in Mathematics, (1294).  doi: 10.1007/978-3-642-11212-6.  Google Scholar

[18]

E. A. Robinson, Symbolic dynamics and tilings of $\mathbbR^d$, Symbolic dynamics and its applications,, in Proc. Sympos. Appl. Math., 60 (2004), 81.  doi: 10.1090/psapm/060/2078847.  Google Scholar

[19]

D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications,, J. d'Analyse Math., 35 (1979), 97.  doi: 10.1007/BF02791063.  Google Scholar

[20]

D. J. Rudolph, Fundamentals of measurable dynamics - Ergodic theory on Lebesque spaces,, Oxford University Press, (1990).   Google Scholar

[21]

V. V. Ryzhikov, Self-joinings of commutative actions with an invariant measure,, Mat. Zametki, 83 (2008), 723.  doi: 10.1134/S0001434608050179.  Google Scholar

[22]

B. Solomyak, Dynamics of self-similar tilings,, Ergodic Theory and Dynamical Systems, 17 (1997), 695.  doi: 10.1017/S0143385797084988.  Google Scholar

[1]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[2]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[3]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[4]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[5]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[6]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[7]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[8]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[9]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[10]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[11]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[12]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[13]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[14]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[15]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[16]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]