-
Previous Article
The existence of strong solutions to the $3D$ Zakharov-Kuznestov equation in a bounded domain
- DCDS Home
- This Issue
-
Next Article
Substitutions, tiling dynamical systems and minimal self-joinings
A new proof of Franks' lemma for geodesic flows
1. | Department of Mathematics, University of Michigan, Ann Arbor, MI, United States |
References:
[1] |
H. N. Alishah and J. Lopes Diaz, Realization of tangent perturbations in discrete and continuous time conservative systems,, preprint, (). Google Scholar |
[2] |
M.-C. Arnaud, The generic symplectic $C^1$-diffeomorphisms of four-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point,, Ergod. Th. & Dynam. Sys., 22 (2002), 1621.
doi: 10.1017/S0143385702000706. |
[3] |
M. Bessa and J. Rocha, On $C^1$-robust transitivity of volume-preserving flows,, J. Diff. Equations, 245 (2008), 3127.
doi: 10.1016/j.jde.2008.02.045. |
[4] |
C. Bonatti, L. Diaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math., 158 (2003), 355.
doi: 10.4007/annals.2003.158.355. |
[5] |
C. Bonatti, N. Gourmelon and T. Vivier, Perturbations of the derivative along periodic orbits,, Ergod. Th. & Dynam. Sys., 26 (2006), 1307.
doi: 10.1017/S0143385706000253. |
[6] |
G. Contreras, Geodesic flows with positive topological entropy, twist maps and hyperbolicity,, Ann. of Math., 172 (2010), 761.
doi: 10.4007/annals.2010.172.761. |
[7] |
G. Contreras and G. Paternain, Genericity of geodesic flows with positive topological entropy on $S^2$,, J. Diff. Geom., 61 (2002), 1.
|
[8] |
J-H. Eschenburg, Horospheres and the stable part of the geodesic flow,, Math. Zeitschrift, 153 (1977), 237.
doi: 10.1007/BF01214477. |
[9] |
J. Franks, Necessary conditions for the stability of diffeomorphisms,, Trans. A.M.S., 158 (1971), 301.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[10] |
V. Horita and A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms,, Ann. I.H. Poicaré, 23 (2006), 641.
doi: 10.1016/j.anihpc.2005.06.002. |
[11] |
W. Klingenberg, Lectures on Closed Geodesics,, Grundleheren Math. Wiss. 230, (1978).
|
[12] |
F. Klok, Generic singularities of the exponential map on Riemannian manifolds,, Geom. Dedicata, 14 (1983), 317.
doi: 10.1007/BF00181572. |
[13] |
C. Morales, M. J. Pacifico and E. Pujals, Robust transitive singular sets for $3$-flows are partially hyperbolic attractors or repellers,, Ann. of Math., 160 (2004), 375.
doi: 10.4007/annals.2004.160.375. |
[14] |
G. Paternain, Geodesic Flows,, Progress in Math. Vol. 180, (1999).
doi: 10.1007/978-1-4612-1600-1. |
[15] |
T. Vivier, Robustly transitive $3$-dimensional regular energy surfaces are Anosov,, Institut de Mathématiques de Bourgogne, (2005). Google Scholar |
show all references
References:
[1] |
H. N. Alishah and J. Lopes Diaz, Realization of tangent perturbations in discrete and continuous time conservative systems,, preprint, (). Google Scholar |
[2] |
M.-C. Arnaud, The generic symplectic $C^1$-diffeomorphisms of four-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point,, Ergod. Th. & Dynam. Sys., 22 (2002), 1621.
doi: 10.1017/S0143385702000706. |
[3] |
M. Bessa and J. Rocha, On $C^1$-robust transitivity of volume-preserving flows,, J. Diff. Equations, 245 (2008), 3127.
doi: 10.1016/j.jde.2008.02.045. |
[4] |
C. Bonatti, L. Diaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math., 158 (2003), 355.
doi: 10.4007/annals.2003.158.355. |
[5] |
C. Bonatti, N. Gourmelon and T. Vivier, Perturbations of the derivative along periodic orbits,, Ergod. Th. & Dynam. Sys., 26 (2006), 1307.
doi: 10.1017/S0143385706000253. |
[6] |
G. Contreras, Geodesic flows with positive topological entropy, twist maps and hyperbolicity,, Ann. of Math., 172 (2010), 761.
doi: 10.4007/annals.2010.172.761. |
[7] |
G. Contreras and G. Paternain, Genericity of geodesic flows with positive topological entropy on $S^2$,, J. Diff. Geom., 61 (2002), 1.
|
[8] |
J-H. Eschenburg, Horospheres and the stable part of the geodesic flow,, Math. Zeitschrift, 153 (1977), 237.
doi: 10.1007/BF01214477. |
[9] |
J. Franks, Necessary conditions for the stability of diffeomorphisms,, Trans. A.M.S., 158 (1971), 301.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[10] |
V. Horita and A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms,, Ann. I.H. Poicaré, 23 (2006), 641.
doi: 10.1016/j.anihpc.2005.06.002. |
[11] |
W. Klingenberg, Lectures on Closed Geodesics,, Grundleheren Math. Wiss. 230, (1978).
|
[12] |
F. Klok, Generic singularities of the exponential map on Riemannian manifolds,, Geom. Dedicata, 14 (1983), 317.
doi: 10.1007/BF00181572. |
[13] |
C. Morales, M. J. Pacifico and E. Pujals, Robust transitive singular sets for $3$-flows are partially hyperbolic attractors or repellers,, Ann. of Math., 160 (2004), 375.
doi: 10.4007/annals.2004.160.375. |
[14] |
G. Paternain, Geodesic Flows,, Progress in Math. Vol. 180, (1999).
doi: 10.1007/978-1-4612-1600-1. |
[15] |
T. Vivier, Robustly transitive $3$-dimensional regular energy surfaces are Anosov,, Institut de Mathématiques de Bourgogne, (2005). Google Scholar |
[1] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[2] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[3] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[4] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[5] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[6] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[7] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[8] |
Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027 |
[9] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[10] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[11] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[12] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[13] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[14] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[15] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[16] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[17] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[18] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[19] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[20] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]