Citation: |
[1] |
E. S. Baykova and A. Faminskii, On initial-boundary-value problems in a strip for the generalized two-dimensional Zakharov-Kuznetsov equation, Adv. Differential Equations, 18 (2013), 663-686. |
[2] |
J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A, 302 (1981), 457-510.doi: 10.1098/rsta.1981.0178. |
[3] |
J. L. Bona, W. G. Pritchard and L. R. Scott, A comparison of solutions of two model equations for long waves, Fluid Dynamics in Astrophysics and Geophysics (Chicago, Ill., 1981), Amer. Math. Soc., (1983), 235-267. |
[4] |
J. L. Bona, S. M. Sun and B. Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436.doi: 10.1081/PDE-120024373. |
[5] |
T. Colin and J. M. Ghidaglia, An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval, Adv. Differential Equations, 6 (2001), 1463-1492. |
[6] |
T. Colin and M. Gisclon, An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation, Nonlinear Anal., 46 (2001), 869-892.doi: 10.1016/S0362-546X(00)00155-3. |
[7] |
C. Cao and E. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. (2), 166 (2007), 245-267.doi: 10.4007/annals.2007.166.245. |
[8] |
G. G. Doronin and N. A. Larkin, Exponential decay for the linear Zakharov-Kuznetsov equation without critical domain restrictions, Appl. Math. Lett., 27 (2014), 6-10.doi: 10.1016/j.aml.2013.08.010. |
[9] |
A. V. Faminskii, On the nonlocal well-posedness of a mixed problem for the Zakharov-Kuznetsov equation, Sovrem. Mat. Prilozh., 38 (2006), 135-148.doi: 10.1007/s10958-007-0491-9. |
[10] |
A. V. Faminskii, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation, Electron. J. Differential Equations, (2008), 23pp. |
[11] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. |
[12] |
D. Lannes, F. Linares and J. C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, in Progress in Nonlinear Differential Equations and their Applications (eds. M. Cicognani, F. Colombini and D. Del Santo), Birkaüser, 2013, 181-213.doi: 10.1007/978-1-4614-6348-1_10. |
[13] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. |
[14] |
E. W. Laedke and K. H. Spatschek, Growth rates of bending solitons, J. Plasma Phys., 28 (1982), 469-484.doi: 10.1017/S0022377800000428. |
[15] |
O. A. Ladyenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, R.I., 1968. |
[16] |
N. A. Larkin and E. Tronco, Regular solutions of the 2D Zakharov-Kuznetsov equation on a half-strip, J. Differential Equations, 254 (2013), 81-101.doi: 10.1016/j.jde.2012.08.023. |
[17] |
Z. Qin and R. Temam, Penalty method for the KdV equation, Appl. Anal., 91 (2012), 193-211.doi: 10.1080/00036811.2011.579564. |
[18] |
J. C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Differential Equations, 15 (2010), 1001-1031. |
[19] |
J. C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain, J. Math. Phys., 53 (2012), 115612, 29pp.doi: 10.1063/1.4752102. |
[20] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0645-3. |
[21] |
C. Wang, Local existence of strong solutions to the 3D Zakharov-Kuznetsov equation in a bounded domain, Appl. Math. Optim., 69 (2014), 1-19, arXiv:1307.6827.doi: 10.1007/s00245-013-9212-6. |
[22] |
V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons, Sov. Phys. JETP, 30 (1974), 285-286. |