November  2014, 34(11): 4897-4910. doi: 10.3934/dcds.2014.34.4897

The existence of strong solutions to the $3D$ Zakharov-Kuznestov equation in a bounded domain

1. 

Department of Mathematics and The Institute, for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405-5701, United States

Received  October 2013 Revised  February 2014 Published  May 2014

We consider the Zakharov-Kuznestov (ZK) equation posed in a limited domain $\mathcal{M}=(0,1)_{x}\times(-\pi /2, \pi /2)^d,$ $ d=1,2$ supplemented with suitable boundary conditions. We prove that there exists a solution $u \in \mathcal C ([0, T]; H^1(\mathcal{M})) $ to the initial and boundary value problem for the ZK equation in both dimensions $2$ and $3$ for every $T>0$. To the best of our knowledge, this is the first result of the global existence of strong solutions for the ZK equation in $3D$.
    More importantly, the idea behind the application of anisotropic estimation to cancel the nonlinear term, we believe, is not only suited for this model but can also be applied to other nonlinear equations with similar structures.
    At the same time, the uniqueness of solutions is still open in $2D$ and $3D$ due to the partially hyperbolic feature of the model.
Citation: Chuntian Wang. The existence of strong solutions to the $3D$ Zakharov-Kuznestov equation in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4897-4910. doi: 10.3934/dcds.2014.34.4897
References:
[1]

E. S. Baykova and A. Faminskii, On initial-boundary-value problems in a strip for the generalized two-dimensional Zakharov-Kuznetsov equation,, Adv. Differential Equations, 18 (2013), 663.   Google Scholar

[2]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Roy. Soc. London Ser. A, 302 (1981), 457.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[3]

J. L. Bona, W. G. Pritchard and L. R. Scott, A comparison of solutions of two model equations for long waves,, Fluid Dynamics in Astrophysics and Geophysics (Chicago, (1983), 235.   Google Scholar

[4]

J. L. Bona, S. M. Sun and B. Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain,, Comm. Partial Differential Equations, 28 (2003), 1391.  doi: 10.1081/PDE-120024373.  Google Scholar

[5]

T. Colin and J. M. Ghidaglia, An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval,, Adv. Differential Equations, 6 (2001), 1463.   Google Scholar

[6]

T. Colin and M. Gisclon, An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation,, Nonlinear Anal., 46 (2001), 869.  doi: 10.1016/S0362-546X(00)00155-3.  Google Scholar

[7]

C. Cao and E. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math. (2), 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[8]

G. G. Doronin and N. A. Larkin, Exponential decay for the linear Zakharov-Kuznetsov equation without critical domain restrictions,, Appl. Math. Lett., 27 (2014), 6.  doi: 10.1016/j.aml.2013.08.010.  Google Scholar

[9]

A. V. Faminskii, On the nonlocal well-posedness of a mixed problem for the Zakharov-Kuznetsov equation,, Sovrem. Mat. Prilozh., 38 (2006), 135.  doi: 10.1007/s10958-007-0491-9.  Google Scholar

[10]

A. V. Faminskii, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation,, Electron. J. Differential Equations, (2008).   Google Scholar

[11]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[12]

D. Lannes, F. Linares and J. C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation,, in Progress in Nonlinear Differential Equations and their Applications (eds. M. Cicognani, (2013), 181.  doi: 10.1007/978-1-4614-6348-1_10.  Google Scholar

[13]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I,, Springer-Verlag, (1972).   Google Scholar

[14]

E. W. Laedke and K. H. Spatschek, Growth rates of bending solitons,, J. Plasma Phys., 28 (1982), 469.  doi: 10.1017/S0022377800000428.  Google Scholar

[15]

O. A. Ladyenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society, (1968).   Google Scholar

[16]

N. A. Larkin and E. Tronco, Regular solutions of the 2D Zakharov-Kuznetsov equation on a half-strip,, J. Differential Equations, 254 (2013), 81.  doi: 10.1016/j.jde.2012.08.023.  Google Scholar

[17]

Z. Qin and R. Temam, Penalty method for the KdV equation,, Appl. Anal., 91 (2012), 193.  doi: 10.1080/00036811.2011.579564.  Google Scholar

[18]

J. C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, Adv. Differential Equations, 15 (2010), 1001.   Google Scholar

[19]

J. C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4752102.  Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[21]

C. Wang, Local existence of strong solutions to the 3D Zakharov-Kuznetsov equation in a bounded domain,, Appl. Math. Optim., 69 (2014), 1.  doi: 10.1007/s00245-013-9212-6.  Google Scholar

[22]

V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons,, Sov. Phys. JETP, 30 (1974), 285.   Google Scholar

show all references

References:
[1]

E. S. Baykova and A. Faminskii, On initial-boundary-value problems in a strip for the generalized two-dimensional Zakharov-Kuznetsov equation,, Adv. Differential Equations, 18 (2013), 663.   Google Scholar

[2]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Roy. Soc. London Ser. A, 302 (1981), 457.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[3]

J. L. Bona, W. G. Pritchard and L. R. Scott, A comparison of solutions of two model equations for long waves,, Fluid Dynamics in Astrophysics and Geophysics (Chicago, (1983), 235.   Google Scholar

[4]

J. L. Bona, S. M. Sun and B. Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain,, Comm. Partial Differential Equations, 28 (2003), 1391.  doi: 10.1081/PDE-120024373.  Google Scholar

[5]

T. Colin and J. M. Ghidaglia, An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval,, Adv. Differential Equations, 6 (2001), 1463.   Google Scholar

[6]

T. Colin and M. Gisclon, An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation,, Nonlinear Anal., 46 (2001), 869.  doi: 10.1016/S0362-546X(00)00155-3.  Google Scholar

[7]

C. Cao and E. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math. (2), 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[8]

G. G. Doronin and N. A. Larkin, Exponential decay for the linear Zakharov-Kuznetsov equation without critical domain restrictions,, Appl. Math. Lett., 27 (2014), 6.  doi: 10.1016/j.aml.2013.08.010.  Google Scholar

[9]

A. V. Faminskii, On the nonlocal well-posedness of a mixed problem for the Zakharov-Kuznetsov equation,, Sovrem. Mat. Prilozh., 38 (2006), 135.  doi: 10.1007/s10958-007-0491-9.  Google Scholar

[10]

A. V. Faminskii, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation,, Electron. J. Differential Equations, (2008).   Google Scholar

[11]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[12]

D. Lannes, F. Linares and J. C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation,, in Progress in Nonlinear Differential Equations and their Applications (eds. M. Cicognani, (2013), 181.  doi: 10.1007/978-1-4614-6348-1_10.  Google Scholar

[13]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I,, Springer-Verlag, (1972).   Google Scholar

[14]

E. W. Laedke and K. H. Spatschek, Growth rates of bending solitons,, J. Plasma Phys., 28 (1982), 469.  doi: 10.1017/S0022377800000428.  Google Scholar

[15]

O. A. Ladyenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society, (1968).   Google Scholar

[16]

N. A. Larkin and E. Tronco, Regular solutions of the 2D Zakharov-Kuznetsov equation on a half-strip,, J. Differential Equations, 254 (2013), 81.  doi: 10.1016/j.jde.2012.08.023.  Google Scholar

[17]

Z. Qin and R. Temam, Penalty method for the KdV equation,, Appl. Anal., 91 (2012), 193.  doi: 10.1080/00036811.2011.579564.  Google Scholar

[18]

J. C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, Adv. Differential Equations, 15 (2010), 1001.   Google Scholar

[19]

J. C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4752102.  Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[21]

C. Wang, Local existence of strong solutions to the 3D Zakharov-Kuznetsov equation in a bounded domain,, Appl. Math. Optim., 69 (2014), 1.  doi: 10.1007/s00245-013-9212-6.  Google Scholar

[22]

V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons,, Sov. Phys. JETP, 30 (1974), 285.   Google Scholar

[1]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[2]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[5]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[6]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[11]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[12]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[13]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[14]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[15]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[16]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[17]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[18]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[20]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]