-
Previous Article
The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces
- DCDS Home
- This Issue
-
Next Article
On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model
Liouville type theorem for nonlinear elliptic equation with general nonlinearity
1. | The Center for China's Overseas Interests, Shenzhen University, Shenzhen Guangdong, 518060, China |
References:
[1] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[2] |
W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.
doi: 10.3934/dcds.2009.24.1167. |
[3] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[4] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series, vol. 4, 2010. |
[5] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093.
doi: 10.3934/dcds.2011.30.1083. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. P.D.E., 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[8] |
M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition, J. Math. Anal. Appl., 223 (1998), 429-471.
doi: 10.1006/jmaa.1998.5958. |
[9] |
L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67-86. |
[10] |
D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397. |
[11] |
D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation, J. Math. Pures. Appl., 61 (1982), 41-63. |
[12] |
B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. P.D.E., 6 (1981), 883-901.
doi: 10.1002/cpa.3160340406. |
[13] |
B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[14] |
J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$, Journal of Differential Equations, 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[15] |
Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$, Comm. P.D.E., 33 (2008), 263-284.
doi: 10.1080/03605300701257476. |
[16] |
Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339-359.
doi: 10.1017/S0308210506000394. |
[17] |
F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1-21.
doi: 10.1016/j.anihpc.2007.03.006. |
[18] |
B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313. |
[19] |
B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135.
doi: 10.1090/S0002-9947-1994-1270664-3. |
[20] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.
doi: 10.1090/S0002-9939-05-08411-X. |
[21] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.
doi: 10.1137/080712301. |
[22] |
Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations, Journal d'Analyse Mathématique, 90 (2003), 27-87.
doi: 10.1007/BF02786551. |
[23] |
Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8. |
[24] |
Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems, Differential Integral Equations, 12 (1999), 601-612. |
[25] |
L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure and Appl, Anal., 5 (2006), 855-859.
doi: 10.3934/cpaa.2006.5.855. |
[26] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Advances in Mathematics, 226 (2011), 2676-2699.
doi: 10.1016/j.aim.2010.07.020. |
[27] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[28] |
E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$, Diff. Int. Eq., 9 (1996), 465-479. |
[29] |
B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition, Differential Integral Equations, 9 (1996), 1157-1164. |
[30] |
J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system, Diff. Int. Eq., 9 (1996), 635-653. |
[31] |
J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369-380. |
[32] |
J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. P.D.E., 23 (1998), 577-599.
doi: 10.1080/03605309808821356. |
[33] |
P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[34] |
S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions, Diff. Int. Eq., 8 (1995), 1911-1922. |
[35] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Eq., 1 (1996), 241-264. |
[36] |
X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var., 46 (2013), 75-95.
doi: 10.1007/s00526-011-0474-z. |
[37] |
X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., ().
|
[38] |
X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity, Journal of Differential Equations, 254 (2013), 2173-2182.
doi: 10.1016/j.jde.2012.11.021. |
show all references
References:
[1] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[2] |
W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.
doi: 10.3934/dcds.2009.24.1167. |
[3] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[4] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series, vol. 4, 2010. |
[5] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093.
doi: 10.3934/dcds.2011.30.1083. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. P.D.E., 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[8] |
M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition, J. Math. Anal. Appl., 223 (1998), 429-471.
doi: 10.1006/jmaa.1998.5958. |
[9] |
L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67-86. |
[10] |
D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397. |
[11] |
D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation, J. Math. Pures. Appl., 61 (1982), 41-63. |
[12] |
B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. P.D.E., 6 (1981), 883-901.
doi: 10.1002/cpa.3160340406. |
[13] |
B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[14] |
J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$, Journal of Differential Equations, 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[15] |
Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$, Comm. P.D.E., 33 (2008), 263-284.
doi: 10.1080/03605300701257476. |
[16] |
Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339-359.
doi: 10.1017/S0308210506000394. |
[17] |
F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1-21.
doi: 10.1016/j.anihpc.2007.03.006. |
[18] |
B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313. |
[19] |
B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135.
doi: 10.1090/S0002-9947-1994-1270664-3. |
[20] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.
doi: 10.1090/S0002-9939-05-08411-X. |
[21] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.
doi: 10.1137/080712301. |
[22] |
Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations, Journal d'Analyse Mathématique, 90 (2003), 27-87.
doi: 10.1007/BF02786551. |
[23] |
Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8. |
[24] |
Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems, Differential Integral Equations, 12 (1999), 601-612. |
[25] |
L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure and Appl, Anal., 5 (2006), 855-859.
doi: 10.3934/cpaa.2006.5.855. |
[26] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Advances in Mathematics, 226 (2011), 2676-2699.
doi: 10.1016/j.aim.2010.07.020. |
[27] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[28] |
E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$, Diff. Int. Eq., 9 (1996), 465-479. |
[29] |
B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition, Differential Integral Equations, 9 (1996), 1157-1164. |
[30] |
J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system, Diff. Int. Eq., 9 (1996), 635-653. |
[31] |
J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369-380. |
[32] |
J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. P.D.E., 23 (1998), 577-599.
doi: 10.1080/03605309808821356. |
[33] |
P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[34] |
S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions, Diff. Int. Eq., 8 (1995), 1911-1922. |
[35] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Eq., 1 (1996), 241-264. |
[36] |
X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var., 46 (2013), 75-95.
doi: 10.1007/s00526-011-0474-z. |
[37] |
X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., ().
|
[38] |
X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity, Journal of Differential Equations, 254 (2013), 2173-2182.
doi: 10.1016/j.jde.2012.11.021. |
[1] |
Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549 |
[2] |
Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248 |
[3] |
Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317 |
[4] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016 |
[5] |
Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050 |
[6] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[7] |
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 |
[8] |
Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 |
[9] |
Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201 |
[10] |
Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067 |
[11] |
Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144 |
[12] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[13] |
Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035 |
[14] |
Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887 |
[15] |
Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034 |
[16] |
Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021059 |
[17] |
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 |
[18] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[19] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[20] |
Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]