• Previous Article
    The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces
  • DCDS Home
  • This Issue
  • Next Article
    On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model
November  2014, 34(11): 4947-4966. doi: 10.3934/dcds.2014.34.4947

Liouville type theorem for nonlinear elliptic equation with general nonlinearity

1. 

The Center for China's Overseas Interests, Shenzhen University, Shenzhen Guangdong, 518060, China

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper, we study the nonexistence of positive solutions for the following elliptic equation $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) & in \quad \mathbb{R}_+^N, \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) & on \quad \partial \mathbb{R}_+^N \end{array} \right. $$ and elliptic system $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u_1=f_1(u_1,u_2) &in \quad \mathbb{R}_+^N, \\ \\-\Delta u_2=f_2(u_1,u_2) & in\quad \mathbb{R}_+^N, \\ \displaystyle \\ \frac{\partial u_1}{\partial \nu}=g_1(u_1,u_2),\quad \frac{\partial u_2}{\partial \nu}=g_2(u_1,u_2) & on \quad \partial \mathbb{R}_+^N. \end{array} \right. $$ We will prove that these problems possess no positive solutions under some assumptions on nonlinear terms. The main technique we use is the moving plane method in an integral form.
Citation: Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947
References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 29 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010).   Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. P.D.E., 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429.  doi: 10.1006/jmaa.1998.5958.  Google Scholar

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.   Google Scholar

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387.   Google Scholar

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.   Google Scholar

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. P.D.E., 6 (1981), 883.  doi: 10.1002/cpa.3160340406.  Google Scholar

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, Commun. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$,, Journal of Differential Equations, 225 (2006), 685.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$,, Comm. P.D.E., 33 (2008), 263.  doi: 10.1080/03605300701257476.  Google Scholar

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$,, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339.  doi: 10.1017/S0308210506000394.  Google Scholar

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301.   Google Scholar

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117.  doi: 10.1090/S0002-9947-1994-1270664-3.  Google Scholar

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations,, Journal d'Analyse Mathématique, 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383.  doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems,, Differential Integral Equations, 12 (1999), 601.   Google Scholar

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure and Appl, 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$,, Diff. Int. Eq., 9 (1996), 465.   Google Scholar

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 1157.   Google Scholar

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Diff. Int. Eq., 9 (1996), 635.   Google Scholar

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369.   Google Scholar

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems,, Comm. P.D.E., 23 (1998), 577.  doi: 10.1080/03605309808821356.  Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Advances in Mathematics, 221 (2009), 1409.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, Diff. Int. Eq., 8 (1995), 1911.   Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Diff. Eq., 1 (1996), 241.   Google Scholar

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var., 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., ().   Google Scholar

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity,, Journal of Differential Equations, 254 (2013), 2173.  doi: 10.1016/j.jde.2012.11.021.  Google Scholar

show all references

References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 29 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010).   Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. P.D.E., 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429.  doi: 10.1006/jmaa.1998.5958.  Google Scholar

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.   Google Scholar

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387.   Google Scholar

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.   Google Scholar

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. P.D.E., 6 (1981), 883.  doi: 10.1002/cpa.3160340406.  Google Scholar

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, Commun. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$,, Journal of Differential Equations, 225 (2006), 685.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$,, Comm. P.D.E., 33 (2008), 263.  doi: 10.1080/03605300701257476.  Google Scholar

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$,, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339.  doi: 10.1017/S0308210506000394.  Google Scholar

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301.   Google Scholar

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117.  doi: 10.1090/S0002-9947-1994-1270664-3.  Google Scholar

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations,, Journal d'Analyse Mathématique, 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383.  doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems,, Differential Integral Equations, 12 (1999), 601.   Google Scholar

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure and Appl, 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$,, Diff. Int. Eq., 9 (1996), 465.   Google Scholar

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 1157.   Google Scholar

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Diff. Int. Eq., 9 (1996), 635.   Google Scholar

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369.   Google Scholar

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems,, Comm. P.D.E., 23 (1998), 577.  doi: 10.1080/03605309808821356.  Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Advances in Mathematics, 221 (2009), 1409.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, Diff. Int. Eq., 8 (1995), 1911.   Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Diff. Eq., 1 (1996), 241.   Google Scholar

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var., 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., ().   Google Scholar

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity,, Journal of Differential Equations, 254 (2013), 2173.  doi: 10.1016/j.jde.2012.11.021.  Google Scholar

[1]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[4]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[5]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[6]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[9]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[10]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[13]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[14]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[19]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[20]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]