November  2014, 34(11): 4967-4986. doi: 10.3934/dcds.2014.34.4967

The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces

1. 

College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China

Received  August 2013 Revised  March 2014 Published  May 2014

This paper deals with the Cauchy problem for a generalized $b$-equation with higher-order nonlinearities $y_{t}+u^{m+1}y_{x}+bu^{m}u_{x}y=0$, where $b$ is a constant and $m\in\mathbb{N}$, the notation $y:= (1-\partial_x^2) u$, which includes the famous $b$-equation and Novikov equation as special cases. The local well-posedness in critical Besov space $B^{3/2}_{2,1}$ is established. Moreover, a lower bound for the maximal existence time is derived. Finally, the persistence properties in weighted $L^p$ spaces for the solution of this equation are considered, which extend the work of Brandolese [L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not. 22 (2012), 5161-5181] on persistence properties to more general equation with higher-order nonlinearities.
Citation: Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967
References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620. doi: 10.1137/S0036144501386986.  Google Scholar

[2]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206. doi: 10.1006/aima.1998.1768.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not., 22 (2012), 5161-5181.  Google Scholar

[5]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632. doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[8]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. doi: 10.1016/j.jfa.2005.07.008.  Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231.  Google Scholar

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757.  Google Scholar

[11]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701.  Google Scholar

[12]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 26 (1998), 303-328.  Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243. doi: 10.1007/BF02392586.  Google Scholar

[14]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana. Univ. Math. J., 47 (1998), 1527-1545. doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[15]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[16]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[17]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[18]

A. Constantin, R. I. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, 23 (2010), 2559-2575. doi: 10.1088/0951-7715/23/10/012.  Google Scholar

[19]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2.  Google Scholar

[20]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801.  Google Scholar

[21]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[22]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x.  Google Scholar

[23]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.  Google Scholar

[24]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444. doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[25]

R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, 14 November, 2003. Google Scholar

[26]

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, Singapore, (1999), 23-37.  Google Scholar

[27]

A. Degasperis, D. Holm and A. Hone, A new integral equation with peakon solutions, Theoret. Math. Phys., 133 (2002), 1463-1474. doi: 10.1023/A:1021186408422.  Google Scholar

[28]

A. Degasperis, D. D. Holm and A. N. W. Hone, Integral and non-integrable equations with peakons, Nonlinear physics: Theory and experiment, II (Gallipoli 2002), World Sci. Publ., River Edge, NJ, (2003), 37-43. doi: 10.1142/9789812704467_0005.  Google Scholar

[29]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73-95. doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[30]

H. R. Dullin, G. A. Gottwald and D. D. Holm, On asymptotically equivalent shallow water wave equations, Phys. D., 190 (2004), 1-14. doi: 10.1016/j.physd.2003.11.004.  Google Scholar

[31]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Letters, 87 (2001), 4501-4504. doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[32]

J. Escher, Y. Liu and Z. Y. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. doi: 10.1016/j.jfa.2006.03.022.  Google Scholar

[33]

J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[34]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the $b$-equation, J. reine Angew. Math., 624 (2008), 51-80. doi: 10.1515/CRELLE.2008.080.  Google Scholar

[35]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[36]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-differential operators: Partial differential equations and time-frequency analysis, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 52 (2007), 343-366.  Google Scholar

[37]

G. L. Gui, Y. Liu and T. X. Tian, Global existence and blow-up phenomena for the peakon $b$-family of equations, Indiana Univ. Math. J., 57 (2008), 1209-1234. doi: 10.1512/iumj.2008.57.3213.  Google Scholar

[38]

D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573. doi: 10.1016/j.na.2008.02.104.  Google Scholar

[39]

A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479. doi: 10.1088/0951-7715/25/2/449.  Google Scholar

[40]

A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phy., 271 (2007), 511-522. doi: 10.1007/s00220-006-0172-4.  Google Scholar

[41]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380. doi: 10.1137/S1111111102410943.  Google Scholar

[42]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE, Phys. Lett. A, 308 (2003), 437-444. doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[43]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. Appl. Math. Theor., 41 (2008), 372002, 10pp. doi: 10.1088/1751-8113/41/37/372002.  Google Scholar

[44]

A. N. W. Hone, H. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation, Dyn. Partial Differ. Equ., 6 (2009), 253-289. doi: 10.4310/DPDE.2009.v6.n3.a3.  Google Scholar

[45]

R. I. Ivanov, Water waves and integrability, Philos. Trans. Roy. Soc. London A, 365 (2007), 2267-2280. doi: 10.1098/rsta.2007.2007.  Google Scholar

[46]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch. A, 61 (2006), 133-138. Google Scholar

[47]

Z. H. Jiang and L. D. Ni, Blow-up phemomena for the integrable Novikov equation, J. Math. Appl. Anal., 385 (2012), 551-558. doi: 10.1016/j.jmaa.2011.06.067.  Google Scholar

[48]

K. Grayshan, Peakon solutions of the Novikov equation and properties of the data-to-solution map, J. Math. Anal. Appl., 397 (2013), 515-521. doi: 10.1016/j.jmaa.2012.08.006.  Google Scholar

[49]

S. Y Lai, N. Li and Y. H. Wu, The existence of global strong and weak solutions for the Novikov equation, J. Math. Anal. Appl., 399 (2013), 682-691. doi: 10.1016/j.jmaa.2012.10.048.  Google Scholar

[50]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. (A), 38 (2005), 869-880. doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[51]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Equ., 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683.  Google Scholar

[52]

N. Li, S. Y. Lai, S. Li and M. Wu, The local and global existence of solutions for a generalized Camasa-Holm equation, Abstr. Appl. Anal., (2012), 26 pp. doi: 10.1155/2012/532369.  Google Scholar

[53]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820. doi: 10.1007/s00220-006-0082-5.  Google Scholar

[54]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. doi: 10.1088/0266-5611/19/6/001.  Google Scholar

[55]

A. V. Mikhailov and V. S. Novikov, Perturbative symmetry approach, J. Phys. (A), 35 (2002), 4775-4790. doi: 10.1088/0305-4470/35/22/309.  Google Scholar

[56]

L. D. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Differential Equations, 250 (2011), 3002-3021. doi: 10.1016/j.jde.2011.01.030.  Google Scholar

[57]

L. D. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-holm equation, Proc. Amer. Math. Soc., 140 (2012), 607-614. doi: 10.1090/S0002-9939-2011-10922-5.  Google Scholar

[58]

W. Niu and S. Zhang, Blow-up phenomena and global existence for the nouniform weakly dissipative $b$-equation, J. Math. Anal. Appl., 374 (2011), 166-177. doi: 10.1016/j.jmaa.2010.08.002.  Google Scholar

[59]

V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002 (14pp). doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[60]

F. Tiglay, The periodic cauchy problem for novikov's equation, Int. Math. Res. Not., 20 (2011), 4633-4648. doi: 10.1093/imrn/rnq267.  Google Scholar

[61]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Solitons Fractals, 20 (2004), 1059-1073. doi: 10.1016/j.chaos.2003.09.043.  Google Scholar

[62]

X. L. Wu and Z. Y. Yin, A note on the Cauchy problem of the Novikov equation, Appl. Anal., 92 (2013), 1116-1137. doi: 10.1080/00036811.2011.649735.  Google Scholar

[63]

S. Y. Wu and Z. Y. Yin, Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor., 44 (2011), 055202 (17pp). doi: 10.1088/1751-8113/44/5/055202.  Google Scholar

[64]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[65]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the integrable Novikov equation, J. Differential Equations, 253 (2012), 298-318. doi: 10.1016/j.jde.2012.03.015.  Google Scholar

[66]

Z. Y. Yin, Global solutions to a new integrable equation with peakons, Indiana. Univ. Math. J., 53 (2004), 1189-1209. doi: 10.1512/iumj.2004.53.2479.  Google Scholar

[67]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, IIIinois J. Math., 47 (2003), 649-666.  Google Scholar

[68]

W. Yan, Y. S. Li and Y. M. Zhang, The cauchy problem for the Novikov equation, Nonlinear Differ. Equ. Appl., 20 (2013), 1157-1169. doi: 10.1007/s00030-012-0202-1.  Google Scholar

[69]

S. M. Zhou and C. L. Mu, The properties of solutions for a generalized $b$-family equation with higher-order nonlinearities and peakons, J. Nonlinear Sci., 23 (2013), 863-889. doi: 10.1007/s00332-013-9171-8.  Google Scholar

[70]

S. M. Zhou, C. L. Mu and L. C. Wang, Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 843-867. doi: 10.3934/dcds.2014.34.843.  Google Scholar

show all references

References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620. doi: 10.1137/S0036144501386986.  Google Scholar

[2]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206. doi: 10.1006/aima.1998.1768.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not., 22 (2012), 5161-5181.  Google Scholar

[5]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632. doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[8]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. doi: 10.1016/j.jfa.2005.07.008.  Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231.  Google Scholar

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757.  Google Scholar

[11]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701.  Google Scholar

[12]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 26 (1998), 303-328.  Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243. doi: 10.1007/BF02392586.  Google Scholar

[14]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana. Univ. Math. J., 47 (1998), 1527-1545. doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[15]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[16]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[17]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[18]

A. Constantin, R. I. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, 23 (2010), 2559-2575. doi: 10.1088/0951-7715/23/10/012.  Google Scholar

[19]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2.  Google Scholar

[20]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801.  Google Scholar

[21]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[22]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x.  Google Scholar

[23]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.  Google Scholar

[24]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444. doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[25]

R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, 14 November, 2003. Google Scholar

[26]

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, Singapore, (1999), 23-37.  Google Scholar

[27]

A. Degasperis, D. Holm and A. Hone, A new integral equation with peakon solutions, Theoret. Math. Phys., 133 (2002), 1463-1474. doi: 10.1023/A:1021186408422.  Google Scholar

[28]

A. Degasperis, D. D. Holm and A. N. W. Hone, Integral and non-integrable equations with peakons, Nonlinear physics: Theory and experiment, II (Gallipoli 2002), World Sci. Publ., River Edge, NJ, (2003), 37-43. doi: 10.1142/9789812704467_0005.  Google Scholar

[29]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73-95. doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[30]

H. R. Dullin, G. A. Gottwald and D. D. Holm, On asymptotically equivalent shallow water wave equations, Phys. D., 190 (2004), 1-14. doi: 10.1016/j.physd.2003.11.004.  Google Scholar

[31]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Letters, 87 (2001), 4501-4504. doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[32]

J. Escher, Y. Liu and Z. Y. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. doi: 10.1016/j.jfa.2006.03.022.  Google Scholar

[33]

J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[34]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the $b$-equation, J. reine Angew. Math., 624 (2008), 51-80. doi: 10.1515/CRELLE.2008.080.  Google Scholar

[35]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[36]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-differential operators: Partial differential equations and time-frequency analysis, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 52 (2007), 343-366.  Google Scholar

[37]

G. L. Gui, Y. Liu and T. X. Tian, Global existence and blow-up phenomena for the peakon $b$-family of equations, Indiana Univ. Math. J., 57 (2008), 1209-1234. doi: 10.1512/iumj.2008.57.3213.  Google Scholar

[38]

D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573. doi: 10.1016/j.na.2008.02.104.  Google Scholar

[39]

A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479. doi: 10.1088/0951-7715/25/2/449.  Google Scholar

[40]

A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phy., 271 (2007), 511-522. doi: 10.1007/s00220-006-0172-4.  Google Scholar

[41]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380. doi: 10.1137/S1111111102410943.  Google Scholar

[42]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE, Phys. Lett. A, 308 (2003), 437-444. doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[43]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. Appl. Math. Theor., 41 (2008), 372002, 10pp. doi: 10.1088/1751-8113/41/37/372002.  Google Scholar

[44]

A. N. W. Hone, H. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation, Dyn. Partial Differ. Equ., 6 (2009), 253-289. doi: 10.4310/DPDE.2009.v6.n3.a3.  Google Scholar

[45]

R. I. Ivanov, Water waves and integrability, Philos. Trans. Roy. Soc. London A, 365 (2007), 2267-2280. doi: 10.1098/rsta.2007.2007.  Google Scholar

[46]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch. A, 61 (2006), 133-138. Google Scholar

[47]

Z. H. Jiang and L. D. Ni, Blow-up phemomena for the integrable Novikov equation, J. Math. Appl. Anal., 385 (2012), 551-558. doi: 10.1016/j.jmaa.2011.06.067.  Google Scholar

[48]

K. Grayshan, Peakon solutions of the Novikov equation and properties of the data-to-solution map, J. Math. Anal. Appl., 397 (2013), 515-521. doi: 10.1016/j.jmaa.2012.08.006.  Google Scholar

[49]

S. Y Lai, N. Li and Y. H. Wu, The existence of global strong and weak solutions for the Novikov equation, J. Math. Anal. Appl., 399 (2013), 682-691. doi: 10.1016/j.jmaa.2012.10.048.  Google Scholar

[50]

J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. (A), 38 (2005), 869-880. doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[51]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Equ., 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683.  Google Scholar

[52]

N. Li, S. Y. Lai, S. Li and M. Wu, The local and global existence of solutions for a generalized Camasa-Holm equation, Abstr. Appl. Anal., (2012), 26 pp. doi: 10.1155/2012/532369.  Google Scholar

[53]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820. doi: 10.1007/s00220-006-0082-5.  Google Scholar

[54]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. doi: 10.1088/0266-5611/19/6/001.  Google Scholar

[55]

A. V. Mikhailov and V. S. Novikov, Perturbative symmetry approach, J. Phys. (A), 35 (2002), 4775-4790. doi: 10.1088/0305-4470/35/22/309.  Google Scholar

[56]

L. D. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Differential Equations, 250 (2011), 3002-3021. doi: 10.1016/j.jde.2011.01.030.  Google Scholar

[57]

L. D. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-holm equation, Proc. Amer. Math. Soc., 140 (2012), 607-614. doi: 10.1090/S0002-9939-2011-10922-5.  Google Scholar

[58]

W. Niu and S. Zhang, Blow-up phenomena and global existence for the nouniform weakly dissipative $b$-equation, J. Math. Anal. Appl., 374 (2011), 166-177. doi: 10.1016/j.jmaa.2010.08.002.  Google Scholar

[59]

V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002 (14pp). doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[60]

F. Tiglay, The periodic cauchy problem for novikov's equation, Int. Math. Res. Not., 20 (2011), 4633-4648. doi: 10.1093/imrn/rnq267.  Google Scholar

[61]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Solitons Fractals, 20 (2004), 1059-1073. doi: 10.1016/j.chaos.2003.09.043.  Google Scholar

[62]

X. L. Wu and Z. Y. Yin, A note on the Cauchy problem of the Novikov equation, Appl. Anal., 92 (2013), 1116-1137. doi: 10.1080/00036811.2011.649735.  Google Scholar

[63]

S. Y. Wu and Z. Y. Yin, Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor., 44 (2011), 055202 (17pp). doi: 10.1088/1751-8113/44/5/055202.  Google Scholar

[64]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[65]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the integrable Novikov equation, J. Differential Equations, 253 (2012), 298-318. doi: 10.1016/j.jde.2012.03.015.  Google Scholar

[66]

Z. Y. Yin, Global solutions to a new integrable equation with peakons, Indiana. Univ. Math. J., 53 (2004), 1189-1209. doi: 10.1512/iumj.2004.53.2479.  Google Scholar

[67]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, IIIinois J. Math., 47 (2003), 649-666.  Google Scholar

[68]

W. Yan, Y. S. Li and Y. M. Zhang, The cauchy problem for the Novikov equation, Nonlinear Differ. Equ. Appl., 20 (2013), 1157-1169. doi: 10.1007/s00030-012-0202-1.  Google Scholar

[69]

S. M. Zhou and C. L. Mu, The properties of solutions for a generalized $b$-family equation with higher-order nonlinearities and peakons, J. Nonlinear Sci., 23 (2013), 863-889. doi: 10.1007/s00332-013-9171-8.  Google Scholar

[70]

S. M. Zhou, C. L. Mu and L. C. Wang, Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 843-867. doi: 10.3934/dcds.2014.34.843.  Google Scholar

[1]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[2]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[3]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[4]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[5]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[6]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[7]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[8]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[9]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[10]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[11]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021052

[12]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[13]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[14]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[15]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[16]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[17]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[18]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[19]

Baoyan Sun, Kung-Chien Wu. Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021147

[20]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]