November  2014, 34(11): 4967-4986. doi: 10.3934/dcds.2014.34.4967

The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces

1. 

College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China

Received  August 2013 Revised  March 2014 Published  May 2014

This paper deals with the Cauchy problem for a generalized $b$-equation with higher-order nonlinearities $y_{t}+u^{m+1}y_{x}+bu^{m}u_{x}y=0$, where $b$ is a constant and $m\in\mathbb{N}$, the notation $y:= (1-\partial_x^2) u$, which includes the famous $b$-equation and Novikov equation as special cases. The local well-posedness in critical Besov space $B^{3/2}_{2,1}$ is established. Moreover, a lower bound for the maximal existence time is derived. Finally, the persistence properties in weighted $L^p$ spaces for the solution of this equation are considered, which extend the work of Brandolese [L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not. 22 (2012), 5161-5181] on persistence properties to more general equation with higher-order nonlinearities.
Citation: Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967
References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces,, SIAM Rev., 43 (2001), 585.  doi: 10.1137/S0036144501386986.  Google Scholar

[2]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.  doi: 10.1006/aima.1998.1768.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces,, Int. Math. Res. Not., 22 (2012), 5161.   Google Scholar

[5]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[8]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 233 (2006), 60.  doi: 10.1016/j.jfa.2005.07.008.  Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation,, J. Funct. Anal., 155 (1998), 352.  doi: 10.1006/jfan.1997.3231.  Google Scholar

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[11]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[12]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 26 (1998), 303.   Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Mathematica, 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[14]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation,, Indiana. Univ. Math. J., 47 (1998), 1527.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[15]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[16]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[17]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Phys. Lett. A, 372 (2008), 7129.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[18]

A. Constantin, R. I. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation,, Nonlinearity, 23 (2010), 2559.  doi: 10.1088/0951-7715/23/10/012.  Google Scholar

[19]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[20]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: 10.1007/s002200050801.  Google Scholar

[21]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[22]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[23]

R. Danchin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.   Google Scholar

[24]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[25]

R. Danchin, Fourier Analysis Methods for PDEs,, Lecture Notes, (2003).   Google Scholar

[26]

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory,, World Scientific, (1999), 23.   Google Scholar

[27]

A. Degasperis, D. Holm and A. Hone, A new integral equation with peakon solutions,, Theoret. Math. Phys., 133 (2002), 1463.  doi: 10.1023/A:1021186408422.  Google Scholar

[28]

A. Degasperis, D. D. Holm and A. N. W. Hone, Integral and non-integrable equations with peakons,, Nonlinear physics: Theory and experiment, (2003), 37.  doi: 10.1142/9789812704467_0005.  Google Scholar

[29]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dyn. Res., 33 (2003), 73.  doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[30]

H. R. Dullin, G. A. Gottwald and D. D. Holm, On asymptotically equivalent shallow water wave equations,, Phys. D., 190 (2004), 1.  doi: 10.1016/j.physd.2003.11.004.  Google Scholar

[31]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Letters, 87 (2001), 4501.  doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[32]

J. Escher, Y. Liu and Z. Y. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457.  doi: 10.1016/j.jfa.2006.03.022.  Google Scholar

[33]

J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87.  doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[34]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the $b$-equation,, J. reine Angew. Math., 624 (2008), 51.  doi: 10.1515/CRELLE.2008.080.  Google Scholar

[35]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[36]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-differential operators: Partial differential equations and time-frequency analysis,, Fields Inst. Commun., 52 (2007), 343.   Google Scholar

[37]

G. L. Gui, Y. Liu and T. X. Tian, Global existence and blow-up phenomena for the peakon $b$-family of equations,, Indiana Univ. Math. J., 57 (2008), 1209.  doi: 10.1512/iumj.2008.57.3213.  Google Scholar

[38]

D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Anal., 70 (2009), 1565.  doi: 10.1016/j.na.2008.02.104.  Google Scholar

[39]

A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation,, Nonlinearity, 25 (2012), 449.  doi: 10.1088/0951-7715/25/2/449.  Google Scholar

[40]

A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phy., 271 (2007), 511.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[41]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323.  doi: 10.1137/S1111111102410943.  Google Scholar

[42]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE,, Phys. Lett. A, 308 (2003), 437.  doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[43]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity,, J. Phys. Appl. Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/37/372002.  Google Scholar

[44]

A. N. W. Hone, H. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation,, Dyn. Partial Differ. Equ., 6 (2009), 253.  doi: 10.4310/DPDE.2009.v6.n3.a3.  Google Scholar

[45]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. London A, 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[46]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities,, Z. Naturforsch. A, 61 (2006), 133.   Google Scholar

[47]

Z. H. Jiang and L. D. Ni, Blow-up phemomena for the integrable Novikov equation,, J. Math. Appl. Anal., 385 (2012), 551.  doi: 10.1016/j.jmaa.2011.06.067.  Google Scholar

[48]

K. Grayshan, Peakon solutions of the Novikov equation and properties of the data-to-solution map,, J. Math. Anal. Appl., 397 (2013), 515.  doi: 10.1016/j.jmaa.2012.08.006.  Google Scholar

[49]

S. Y Lai, N. Li and Y. H. Wu, The existence of global strong and weak solutions for the Novikov equation,, J. Math. Anal. Appl., 399 (2013), 682.  doi: 10.1016/j.jmaa.2012.10.048.  Google Scholar

[50]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. (A), 38 (2005), 869.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[51]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Diff. Equ., 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[52]

N. Li, S. Y. Lai, S. Li and M. Wu, The local and global existence of solutions for a generalized Camasa-Holm equation,, Abstr. Appl. Anal., (2012).  doi: 10.1155/2012/532369.  Google Scholar

[53]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[54]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241.  doi: 10.1088/0266-5611/19/6/001.  Google Scholar

[55]

A. V. Mikhailov and V. S. Novikov, Perturbative symmetry approach,, J. Phys. (A), 35 (2002), 4775.  doi: 10.1088/0305-4470/35/22/309.  Google Scholar

[56]

L. D. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation,, J. Differential Equations, 250 (2011), 3002.  doi: 10.1016/j.jde.2011.01.030.  Google Scholar

[57]

L. D. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-holm equation,, Proc. Amer. Math. Soc., 140 (2012), 607.  doi: 10.1090/S0002-9939-2011-10922-5.  Google Scholar

[58]

W. Niu and S. Zhang, Blow-up phenomena and global existence for the nouniform weakly dissipative $b$-equation,, J. Math. Anal. Appl., 374 (2011), 166.  doi: 10.1016/j.jmaa.2010.08.002.  Google Scholar

[59]

V. S. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[60]

F. Tiglay, The periodic cauchy problem for novikov's equation,, Int. Math. Res. Not., 20 (2011), 4633.  doi: 10.1093/imrn/rnq267.  Google Scholar

[61]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059.  doi: 10.1016/j.chaos.2003.09.043.  Google Scholar

[62]

X. L. Wu and Z. Y. Yin, A note on the Cauchy problem of the Novikov equation,, Appl. Anal., 92 (2013), 1116.  doi: 10.1080/00036811.2011.649735.  Google Scholar

[63]

S. Y. Wu and Z. Y. Yin, Global weak solutions for the Novikov equation,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/5/055202.  Google Scholar

[64]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[65]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the integrable Novikov equation,, J. Differential Equations, 253 (2012), 298.  doi: 10.1016/j.jde.2012.03.015.  Google Scholar

[66]

Z. Y. Yin, Global solutions to a new integrable equation with peakons,, Indiana. Univ. Math. J., 53 (2004), 1189.  doi: 10.1512/iumj.2004.53.2479.  Google Scholar

[67]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions,, IIIinois J. Math., 47 (2003), 649.   Google Scholar

[68]

W. Yan, Y. S. Li and Y. M. Zhang, The cauchy problem for the Novikov equation,, Nonlinear Differ. Equ. Appl., 20 (2013), 1157.  doi: 10.1007/s00030-012-0202-1.  Google Scholar

[69]

S. M. Zhou and C. L. Mu, The properties of solutions for a generalized $b$-family equation with higher-order nonlinearities and peakons,, J. Nonlinear Sci., 23 (2013), 863.  doi: 10.1007/s00332-013-9171-8.  Google Scholar

[70]

S. M. Zhou, C. L. Mu and L. C. Wang, Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation,, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 843.  doi: 10.3934/dcds.2014.34.843.  Google Scholar

show all references

References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces,, SIAM Rev., 43 (2001), 585.  doi: 10.1137/S0036144501386986.  Google Scholar

[2]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.  doi: 10.1006/aima.1998.1768.  Google Scholar

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[4]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces,, Int. Math. Res. Not., 22 (2012), 5161.   Google Scholar

[5]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.  doi: 10.1016/j.crma.2006.10.014.  Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[8]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 233 (2006), 60.  doi: 10.1016/j.jfa.2005.07.008.  Google Scholar

[9]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation,, J. Funct. Anal., 155 (1998), 352.  doi: 10.1006/jfan.1997.3231.  Google Scholar

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[11]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[12]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 26 (1998), 303.   Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Mathematica, 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[14]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation,, Indiana. Univ. Math. J., 47 (1998), 1527.  doi: 10.1512/iumj.1998.47.1466.  Google Scholar

[15]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[16]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[17]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Phys. Lett. A, 372 (2008), 7129.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[18]

A. Constantin, R. I. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation,, Nonlinearity, 23 (2010), 2559.  doi: 10.1088/0951-7715/23/10/012.  Google Scholar

[19]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[20]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: 10.1007/s002200050801.  Google Scholar

[21]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[22]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[23]

R. Danchin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.   Google Scholar

[24]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[25]

R. Danchin, Fourier Analysis Methods for PDEs,, Lecture Notes, (2003).   Google Scholar

[26]

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory,, World Scientific, (1999), 23.   Google Scholar

[27]

A. Degasperis, D. Holm and A. Hone, A new integral equation with peakon solutions,, Theoret. Math. Phys., 133 (2002), 1463.  doi: 10.1023/A:1021186408422.  Google Scholar

[28]

A. Degasperis, D. D. Holm and A. N. W. Hone, Integral and non-integrable equations with peakons,, Nonlinear physics: Theory and experiment, (2003), 37.  doi: 10.1142/9789812704467_0005.  Google Scholar

[29]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dyn. Res., 33 (2003), 73.  doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[30]

H. R. Dullin, G. A. Gottwald and D. D. Holm, On asymptotically equivalent shallow water wave equations,, Phys. D., 190 (2004), 1.  doi: 10.1016/j.physd.2003.11.004.  Google Scholar

[31]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Letters, 87 (2001), 4501.  doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[32]

J. Escher, Y. Liu and Z. Y. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457.  doi: 10.1016/j.jfa.2006.03.022.  Google Scholar

[33]

J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87.  doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[34]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the $b$-equation,, J. reine Angew. Math., 624 (2008), 51.  doi: 10.1515/CRELLE.2008.080.  Google Scholar

[35]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[36]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-differential operators: Partial differential equations and time-frequency analysis,, Fields Inst. Commun., 52 (2007), 343.   Google Scholar

[37]

G. L. Gui, Y. Liu and T. X. Tian, Global existence and blow-up phenomena for the peakon $b$-family of equations,, Indiana Univ. Math. J., 57 (2008), 1209.  doi: 10.1512/iumj.2008.57.3213.  Google Scholar

[38]

D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Anal., 70 (2009), 1565.  doi: 10.1016/j.na.2008.02.104.  Google Scholar

[39]

A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation,, Nonlinearity, 25 (2012), 449.  doi: 10.1088/0951-7715/25/2/449.  Google Scholar

[40]

A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phy., 271 (2007), 511.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[41]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323.  doi: 10.1137/S1111111102410943.  Google Scholar

[42]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE,, Phys. Lett. A, 308 (2003), 437.  doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[43]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity,, J. Phys. Appl. Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/37/372002.  Google Scholar

[44]

A. N. W. Hone, H. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation,, Dyn. Partial Differ. Equ., 6 (2009), 253.  doi: 10.4310/DPDE.2009.v6.n3.a3.  Google Scholar

[45]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. London A, 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[46]

R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities,, Z. Naturforsch. A, 61 (2006), 133.   Google Scholar

[47]

Z. H. Jiang and L. D. Ni, Blow-up phemomena for the integrable Novikov equation,, J. Math. Appl. Anal., 385 (2012), 551.  doi: 10.1016/j.jmaa.2011.06.067.  Google Scholar

[48]

K. Grayshan, Peakon solutions of the Novikov equation and properties of the data-to-solution map,, J. Math. Anal. Appl., 397 (2013), 515.  doi: 10.1016/j.jmaa.2012.08.006.  Google Scholar

[49]

S. Y Lai, N. Li and Y. H. Wu, The existence of global strong and weak solutions for the Novikov equation,, J. Math. Anal. Appl., 399 (2013), 682.  doi: 10.1016/j.jmaa.2012.10.048.  Google Scholar

[50]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. (A), 38 (2005), 869.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[51]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Diff. Equ., 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[52]

N. Li, S. Y. Lai, S. Li and M. Wu, The local and global existence of solutions for a generalized Camasa-Holm equation,, Abstr. Appl. Anal., (2012).  doi: 10.1155/2012/532369.  Google Scholar

[53]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[54]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241.  doi: 10.1088/0266-5611/19/6/001.  Google Scholar

[55]

A. V. Mikhailov and V. S. Novikov, Perturbative symmetry approach,, J. Phys. (A), 35 (2002), 4775.  doi: 10.1088/0305-4470/35/22/309.  Google Scholar

[56]

L. D. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation,, J. Differential Equations, 250 (2011), 3002.  doi: 10.1016/j.jde.2011.01.030.  Google Scholar

[57]

L. D. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-holm equation,, Proc. Amer. Math. Soc., 140 (2012), 607.  doi: 10.1090/S0002-9939-2011-10922-5.  Google Scholar

[58]

W. Niu and S. Zhang, Blow-up phenomena and global existence for the nouniform weakly dissipative $b$-equation,, J. Math. Anal. Appl., 374 (2011), 166.  doi: 10.1016/j.jmaa.2010.08.002.  Google Scholar

[59]

V. S. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[60]

F. Tiglay, The periodic cauchy problem for novikov's equation,, Int. Math. Res. Not., 20 (2011), 4633.  doi: 10.1093/imrn/rnq267.  Google Scholar

[61]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059.  doi: 10.1016/j.chaos.2003.09.043.  Google Scholar

[62]

X. L. Wu and Z. Y. Yin, A note on the Cauchy problem of the Novikov equation,, Appl. Anal., 92 (2013), 1116.  doi: 10.1080/00036811.2011.649735.  Google Scholar

[63]

S. Y. Wu and Z. Y. Yin, Global weak solutions for the Novikov equation,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/5/055202.  Google Scholar

[64]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[65]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the integrable Novikov equation,, J. Differential Equations, 253 (2012), 298.  doi: 10.1016/j.jde.2012.03.015.  Google Scholar

[66]

Z. Y. Yin, Global solutions to a new integrable equation with peakons,, Indiana. Univ. Math. J., 53 (2004), 1189.  doi: 10.1512/iumj.2004.53.2479.  Google Scholar

[67]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions,, IIIinois J. Math., 47 (2003), 649.   Google Scholar

[68]

W. Yan, Y. S. Li and Y. M. Zhang, The cauchy problem for the Novikov equation,, Nonlinear Differ. Equ. Appl., 20 (2013), 1157.  doi: 10.1007/s00030-012-0202-1.  Google Scholar

[69]

S. M. Zhou and C. L. Mu, The properties of solutions for a generalized $b$-family equation with higher-order nonlinearities and peakons,, J. Nonlinear Sci., 23 (2013), 863.  doi: 10.1007/s00332-013-9171-8.  Google Scholar

[70]

S. M. Zhou, C. L. Mu and L. C. Wang, Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation,, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 843.  doi: 10.3934/dcds.2014.34.843.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[4]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[5]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[6]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[7]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[8]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[9]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[10]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[11]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[12]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[13]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[14]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[15]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[16]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[17]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[18]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[19]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[20]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]