-
Previous Article
Multi-hump solutions of some singularly-perturbed equations of KdV type
- DCDS Home
- This Issue
-
Next Article
Measuring the total amount of chaos in some Hamiltonian systems
On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical
1. | Department of Mathematics, Yonsei University, Seoul, South Korea |
References:
[1] |
H. Chen, W. Liu and Y. Yang, On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.
doi: 10.1137/S0036141000337796. |
[2] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimension, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[3] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.
doi: 10.1137/S0036141001385046. |
[4] |
A. Friedman and I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[5] |
D. Henry, Geometric Theory of Semilinear Parabolic Equation, Springer-Verlag, New York, 1981. |
[6] |
K. Kang, A. Stevens and J. J. L. Velázquez, Qualitative behavior of a Keller-Segel model with non-diffusive memory, J. Comm. Part. Diff. Eqs., 35 (2010), 245-274.
doi: 10.1080/03605300903473400. |
[7] |
E. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[8] |
E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[9] |
H. Kozono, Y. Sugiyama and R. Takada, Non-existence of finite-time self-similar solutions of the Keller-Segel system in the scaling invariant class, J. Math. Anal. Appl., 365 (2010), 60-66.
doi: 10.1016/j.jmaa.2009.09.063. |
[10] |
O. A. Ladyženskja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monogr., AMS., Providence, RI., 1967. |
[11] |
H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.
doi: 10.1137/S0036139995291106. |
[12] |
H. A. Levine and B. D. Sleeman, Partial differential equations of chemotaxis and angiogenesis, Math. Methods Appl. Sci., 24 (2001), 405-426.
doi: 10.1002/mma.212. |
[13] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[14] |
H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976. |
[15] |
B. Perthame and A. Vasseur, Regularization in Keller Segel type systems and the De Giorgi method, J. Comm. Math. Sci., 10 (2012), 463-476.
doi: 10.4310/CMS.2012.v10.n2.a2. |
[16] |
A. Stevens, Trail following and aggregation of myxobacteria, J. Biol. Systems, 3 (1995), 1059-1068.
doi: 10.1142/S0218339095000952. |
[17] |
A. Stevens and J. J. L. Velázquez, Asymptotic analysis of a chemotaxis system with non-diffusive memory,, preprint., ().
|
[18] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, J. Diff. Int. Eqns., 19 (2006), 841-876. |
[19] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Eqs., 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
show all references
References:
[1] |
H. Chen, W. Liu and Y. Yang, On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.
doi: 10.1137/S0036141000337796. |
[2] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimension, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[3] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.
doi: 10.1137/S0036141001385046. |
[4] |
A. Friedman and I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[5] |
D. Henry, Geometric Theory of Semilinear Parabolic Equation, Springer-Verlag, New York, 1981. |
[6] |
K. Kang, A. Stevens and J. J. L. Velázquez, Qualitative behavior of a Keller-Segel model with non-diffusive memory, J. Comm. Part. Diff. Eqs., 35 (2010), 245-274.
doi: 10.1080/03605300903473400. |
[7] |
E. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[8] |
E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[9] |
H. Kozono, Y. Sugiyama and R. Takada, Non-existence of finite-time self-similar solutions of the Keller-Segel system in the scaling invariant class, J. Math. Anal. Appl., 365 (2010), 60-66.
doi: 10.1016/j.jmaa.2009.09.063. |
[10] |
O. A. Ladyženskja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monogr., AMS., Providence, RI., 1967. |
[11] |
H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.
doi: 10.1137/S0036139995291106. |
[12] |
H. A. Levine and B. D. Sleeman, Partial differential equations of chemotaxis and angiogenesis, Math. Methods Appl. Sci., 24 (2001), 405-426.
doi: 10.1002/mma.212. |
[13] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[14] |
H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976. |
[15] |
B. Perthame and A. Vasseur, Regularization in Keller Segel type systems and the De Giorgi method, J. Comm. Math. Sci., 10 (2012), 463-476.
doi: 10.4310/CMS.2012.v10.n2.a2. |
[16] |
A. Stevens, Trail following and aggregation of myxobacteria, J. Biol. Systems, 3 (1995), 1059-1068.
doi: 10.1142/S0218339095000952. |
[17] |
A. Stevens and J. J. L. Velázquez, Asymptotic analysis of a chemotaxis system with non-diffusive memory,, preprint., ().
|
[18] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, J. Diff. Int. Eqns., 19 (2006), 841-876. |
[19] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Eqs., 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[1] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[2] |
Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078 |
[3] |
Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317 |
[4] |
Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure and Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383 |
[5] |
Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control and Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003 |
[6] |
Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093 |
[7] |
Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007 |
[8] |
Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464 |
[9] |
Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81 |
[10] |
Yanni Zeng, Kun Zhao. On the logarithmic Keller-Segel-Fisher/KPP system. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5365-5402. doi: 10.3934/dcds.2019220 |
[11] |
Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure and Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339 |
[12] |
Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure and Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287 |
[13] |
Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059 |
[14] |
Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295 |
[15] |
Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597 |
[16] |
Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061 |
[17] |
Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic and Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042 |
[18] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[19] |
Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218 |
[20] |
Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]