-
Previous Article
Some remarks on symmetric periodic orbits in the restricted three-body problem
- DCDS Home
- This Issue
-
Next Article
Multi-hump solutions of some singularly-perturbed equations of KdV type
Cocycle rigidity and splitting for some discrete parabolic actions
1. | Department of Mathematics, Rice University, 6100 Main st, Houston, TX 77005, United States, United States |
References:
[1] |
D. Damjanović, Perturbations of smooth actions with non-trivial cohomology,, Preprint., ().
|
[2] |
D. Damjanović and A. Katok, Local rigidity of homogeneous parabolic actions: I. A model case, Journal of Modern Dynamics, 5 (2011), 203-235.
doi: 10.3934/jmd.2011.5.203. |
[3] |
R. Feres and A. Katok, Ergodic theory and dynamics of G-spaces (with special em- phasis on rigidity phenomena), Handbook of dynamical systems, North-Holland, Amsterdam, 1A (2002), 665-763.
doi: 10.1016/S1874-575X(02)80011-X. |
[4] |
R. Godemont, Sur la théori des représentations unitaires, Ann. of Math., 53 (1951), 68-124.
doi: 10.2307/1969343. |
[5] |
L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke J. of Math, 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[6] |
F. Mautner, Unitary representations of locally compact groups. I, Ann. of Math. (2), 51 (1950), 1-25.
doi: 10.2307/1969494. |
[7] |
F. Mautner, Unitary representations of locally compact groups. II, Ann. of Math. (2), 52 (1950), 528-556.
doi: 10.2307/1969431. |
[8] |
D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, Journal of Modern Dynamics, 1 (2007), 61-92.
doi: 10.3934/jmd.2007.1.61. |
[9] |
D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350. |
[10] |
D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $PSL(2, \mathbbR)$, J. Eur. Math. Soc., 11 (2009), 283-313.
doi: 10.4171/JEMS/151. |
[11] |
F. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn., 3 (2009), 335-357.
doi: 10.3934/jmd.2009.3.335. |
[12] |
J. Tanis, The cohomological equation and invariant distributions for horocycle maps, Ergodic Theory and Dynamical systems, 34 (2014), 299-340.
doi: 10.1017/etds.2012.125. |
show all references
References:
[1] |
D. Damjanović, Perturbations of smooth actions with non-trivial cohomology,, Preprint., ().
|
[2] |
D. Damjanović and A. Katok, Local rigidity of homogeneous parabolic actions: I. A model case, Journal of Modern Dynamics, 5 (2011), 203-235.
doi: 10.3934/jmd.2011.5.203. |
[3] |
R. Feres and A. Katok, Ergodic theory and dynamics of G-spaces (with special em- phasis on rigidity phenomena), Handbook of dynamical systems, North-Holland, Amsterdam, 1A (2002), 665-763.
doi: 10.1016/S1874-575X(02)80011-X. |
[4] |
R. Godemont, Sur la théori des représentations unitaires, Ann. of Math., 53 (1951), 68-124.
doi: 10.2307/1969343. |
[5] |
L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke J. of Math, 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[6] |
F. Mautner, Unitary representations of locally compact groups. I, Ann. of Math. (2), 51 (1950), 1-25.
doi: 10.2307/1969494. |
[7] |
F. Mautner, Unitary representations of locally compact groups. II, Ann. of Math. (2), 52 (1950), 528-556.
doi: 10.2307/1969431. |
[8] |
D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, Journal of Modern Dynamics, 1 (2007), 61-92.
doi: 10.3934/jmd.2007.1.61. |
[9] |
D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350. |
[10] |
D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $PSL(2, \mathbbR)$, J. Eur. Math. Soc., 11 (2009), 283-313.
doi: 10.4171/JEMS/151. |
[11] |
F. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn., 3 (2009), 335-357.
doi: 10.3934/jmd.2009.3.335. |
[12] |
J. Tanis, The cohomological equation and invariant distributions for horocycle maps, Ergodic Theory and Dynamical systems, 34 (2014), 299-340.
doi: 10.1017/etds.2012.125. |
[1] |
James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160 |
[2] |
Anatole Katok, Federico Rodriguez Hertz. Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups. Journal of Modern Dynamics, 2010, 4 (3) : 487-515. doi: 10.3934/jmd.2010.4.487 |
[3] |
Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985 |
[4] |
Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203 |
[5] |
Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47. |
[6] |
Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130 |
[7] |
Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191 |
[8] |
Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79 |
[9] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271 |
[10] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68 |
[11] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[12] |
A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133. |
[13] |
Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of \zd-actions on tori and solenoids. Electronic Research Announcements, 2003, 9: 99-110. |
[14] |
Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193 |
[15] |
Federico Rodriguez Hertz. Global rigidity of certain Abelian actions by toral automorphisms. Journal of Modern Dynamics, 2007, 1 (3) : 425-442. doi: 10.3934/jmd.2007.1.425 |
[16] |
Tao Yu, Guohua Zhang, Ruifeng Zhang. Discrete spectrum for amenable group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5871-5886. doi: 10.3934/dcds.2021099 |
[17] |
Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123 |
[18] |
Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154. |
[19] |
Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779 |
[20] |
Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]