Citation: |
[1] |
L. A. Maia, E. Nontefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger systems, J. Diff. Equat., 229 (2006), 743-767.doi: 10.1016/j.jde.2006.07.002. |
[2] |
T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var., 37 (2010), 345-361.doi: 10.1007/s00526-009-0265-y. |
[3] |
T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger systems, J. Fixed Point Theory Appl., 2 (2007), 353-367.doi: 10.1007/s11784-007-0033-6. |
[4] |
D. Cao and T. Küpper, On the existence of multipeaked solutions to a semilinear Neumann Problem, Duke Math. J., 97 (1999), 261-300.doi: 10.1215/S0012-7094-99-09712-0. |
[5] |
N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction, Tran. Amer. Math. Soci., 361 (2009), 1189-1208.doi: 10.1090/S0002-9947-08-04735-1. |
[6] |
S. Peng and Z. Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Ration. Mech. Anal., 208 (2013), 305-339.doi: 10.1007/s00205-012-0598-0. |
[7] |
M. Lucia and Z. Tang, Multi-bump bound states for a system of nonlinear Schrödinger equations, J. Differential Equations, 252 (2012), 3630-3657.doi: 10.1016/j.jde.2011.11.017. |
[8] |
W. M. Ni and I. Takagi, Locating the peaks of the least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.doi: 10.1215/S0012-7094-93-07004-4. |
[9] |
B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartee-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. |
[10] |
C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47-82.doi: 10.1016/S0294-1449(99)00104-3. |
[11] |
T. Lin and J. Wei, Spike in two coupled of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439.doi: 10.1016/j.anihpc.2004.03.004. |
[12] |
T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n,n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.doi: 10.1007/s00220-005-1313-x. |
[13] |
T. Lin and J. Wei, Spike in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Diff. Equat., 229 (2006), 538-569.doi: 10.1016/j.jde.2005.12.011. |
[14] |
B. Sirakov, Least energy solitary waves for a system of nonliear Schrödinger equations in $\mathbbR^n$, Commun. Math. Phys., 271 (2007), 199-221.doi: 10.1007/s00220-006-0179-x. |
[15] |
Z. Tang, Spike-layer solutions to singularly perturbed semilinear systems of coupled schrödinger equations, J. Math. Anal. Appl., 377 (2011), 336-352.doi: 10.1016/j.jmaa.2010.11.001. |
[16] |
Z. Tang, Multi-peak solutions to a coupled schrödinger systems with neumann boundary condition, J. Math. Anal. Appl., 409 (2014), 684-704.doi: 10.1016/j.jmaa.2013.07.053. |
[17] |
J. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293.doi: 10.4171/RLM/495. |
[18] |
J. Wei and T. Weth, Radial solutions and phase sparation in a system of two coupled Schrödinger equations, Arch. Rat. Mech. Anal., 190 (2008), 83-106.doi: 10.1007/s00205-008-0121-9. |
[19] |
J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459-492.doi: 10.1016/S0294-1449(98)80031-0. |
[20] |
W. Yao and J. Wei, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure. Appl. Anal., 11 (2012), 1003-1011.doi: 10.3934/cpaa.2012.11.1003. |