-
Previous Article
Optimal parameter-dependent bounds for Kuramoto-Sivashinsky-type equations
- DCDS Home
- This Issue
-
Next Article
The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion
Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions
1. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875 |
References:
[1] |
L. A. Maia, E. Nontefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger systems, J. Diff. Equat., 229 (2006), 743-767.
doi: 10.1016/j.jde.2006.07.002. |
[2] |
T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[3] |
T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger systems, J. Fixed Point Theory Appl., 2 (2007), 353-367.
doi: 10.1007/s11784-007-0033-6. |
[4] |
D. Cao and T. Küpper, On the existence of multipeaked solutions to a semilinear Neumann Problem, Duke Math. J., 97 (1999), 261-300.
doi: 10.1215/S0012-7094-99-09712-0. |
[5] |
N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction, Tran. Amer. Math. Soci., 361 (2009), 1189-1208.
doi: 10.1090/S0002-9947-08-04735-1. |
[6] |
S. Peng and Z. Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Ration. Mech. Anal., 208 (2013), 305-339.
doi: 10.1007/s00205-012-0598-0. |
[7] |
M. Lucia and Z. Tang, Multi-bump bound states for a system of nonlinear Schrödinger equations, J. Differential Equations, 252 (2012), 3630-3657.
doi: 10.1016/j.jde.2011.11.017. |
[8] |
W. M. Ni and I. Takagi, Locating the peaks of the least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[9] |
B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartee-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. |
[10] |
C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47-82.
doi: 10.1016/S0294-1449(99)00104-3. |
[11] |
T. Lin and J. Wei, Spike in two coupled of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439.
doi: 10.1016/j.anihpc.2004.03.004. |
[12] |
T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n,n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[13] |
T. Lin and J. Wei, Spike in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Diff. Equat., 229 (2006), 538-569.
doi: 10.1016/j.jde.2005.12.011. |
[14] |
B. Sirakov, Least energy solitary waves for a system of nonliear Schrödinger equations in $\mathbb{R}^{N}$, Commun. Math. Phys., 271 (2007), 199-221.
doi: 10.1007/s00220-006-0179-x. |
[15] |
Z. Tang, Spike-layer solutions to singularly perturbed semilinear systems of coupled schrödinger equations, J. Math. Anal. Appl., 377 (2011), 336-352.
doi: 10.1016/j.jmaa.2010.11.001. |
[16] |
Z. Tang, Multi-peak solutions to a coupled schrödinger systems with neumann boundary condition, J. Math. Anal. Appl., 409 (2014), 684-704.
doi: 10.1016/j.jmaa.2013.07.053. |
[17] |
J. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293.
doi: 10.4171/RLM/495. |
[18] |
J. Wei and T. Weth, Radial solutions and phase sparation in a system of two coupled Schrödinger equations, Arch. Rat. Mech. Anal., 190 (2008), 83-106.
doi: 10.1007/s00205-008-0121-9. |
[19] |
J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459-492.
doi: 10.1016/S0294-1449(98)80031-0. |
[20] |
W. Yao and J. Wei, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure. Appl. Anal., 11 (2012), 1003-1011.
doi: 10.3934/cpaa.2012.11.1003. |
show all references
References:
[1] |
L. A. Maia, E. Nontefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger systems, J. Diff. Equat., 229 (2006), 743-767.
doi: 10.1016/j.jde.2006.07.002. |
[2] |
T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[3] |
T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger systems, J. Fixed Point Theory Appl., 2 (2007), 353-367.
doi: 10.1007/s11784-007-0033-6. |
[4] |
D. Cao and T. Küpper, On the existence of multipeaked solutions to a semilinear Neumann Problem, Duke Math. J., 97 (1999), 261-300.
doi: 10.1215/S0012-7094-99-09712-0. |
[5] |
N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction, Tran. Amer. Math. Soci., 361 (2009), 1189-1208.
doi: 10.1090/S0002-9947-08-04735-1. |
[6] |
S. Peng and Z. Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Ration. Mech. Anal., 208 (2013), 305-339.
doi: 10.1007/s00205-012-0598-0. |
[7] |
M. Lucia and Z. Tang, Multi-bump bound states for a system of nonlinear Schrödinger equations, J. Differential Equations, 252 (2012), 3630-3657.
doi: 10.1016/j.jde.2011.11.017. |
[8] |
W. M. Ni and I. Takagi, Locating the peaks of the least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[9] |
B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartee-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. |
[10] |
C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47-82.
doi: 10.1016/S0294-1449(99)00104-3. |
[11] |
T. Lin and J. Wei, Spike in two coupled of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439.
doi: 10.1016/j.anihpc.2004.03.004. |
[12] |
T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n,n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[13] |
T. Lin and J. Wei, Spike in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Diff. Equat., 229 (2006), 538-569.
doi: 10.1016/j.jde.2005.12.011. |
[14] |
B. Sirakov, Least energy solitary waves for a system of nonliear Schrödinger equations in $\mathbb{R}^{N}$, Commun. Math. Phys., 271 (2007), 199-221.
doi: 10.1007/s00220-006-0179-x. |
[15] |
Z. Tang, Spike-layer solutions to singularly perturbed semilinear systems of coupled schrödinger equations, J. Math. Anal. Appl., 377 (2011), 336-352.
doi: 10.1016/j.jmaa.2010.11.001. |
[16] |
Z. Tang, Multi-peak solutions to a coupled schrödinger systems with neumann boundary condition, J. Math. Anal. Appl., 409 (2014), 684-704.
doi: 10.1016/j.jmaa.2013.07.053. |
[17] |
J. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293.
doi: 10.4171/RLM/495. |
[18] |
J. Wei and T. Weth, Radial solutions and phase sparation in a system of two coupled Schrödinger equations, Arch. Rat. Mech. Anal., 190 (2008), 83-106.
doi: 10.1007/s00205-008-0121-9. |
[19] |
J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459-492.
doi: 10.1016/S0294-1449(98)80031-0. |
[20] |
W. Yao and J. Wei, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure. Appl. Anal., 11 (2012), 1003-1011.
doi: 10.3934/cpaa.2012.11.1003. |
[1] |
Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265 |
[2] |
Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087 |
[3] |
Hongyu Ye. Positive solutions for critically coupled Schrödinger systems with attractive interactions. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 485-507. doi: 10.3934/dcds.2018022 |
[4] |
Jiabao Su, Rushun Tian, Zhi-Qiang Wang. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2143-2161. doi: 10.3934/dcdss.2019138 |
[5] |
Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118 |
[6] |
Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure and Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883 |
[7] |
Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125 |
[8] |
Alessio Pomponio, Simone Secchi. A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities. Communications on Pure and Applied Analysis, 2010, 9 (3) : 741-750. doi: 10.3934/cpaa.2010.9.741 |
[9] |
Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205 |
[10] |
Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048 |
[11] |
Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003 |
[12] |
Chuangye Liu, Rushun Tian. Normalized solutions for 3-coupled nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5115-5130. doi: 10.3934/cpaa.2020229 |
[13] |
Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259 |
[14] |
Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911 |
[15] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294 |
[16] |
Mohammad Ali Husaini, Chuangye Liu. Synchronized and ground-state solutions to a coupled Schrödinger system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 639-667. doi: 10.3934/cpaa.2021192 |
[17] |
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83 |
[18] |
Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001 |
[19] |
Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152 |
[20] |
Fengshuang Gao, Yuxia Guo. Multiple solutions for a nonlinear Schrödinger systems. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1181-1204. doi: 10.3934/cpaa.2020055 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]