# American Institute of Mathematical Sciences

February  2014, 34(2): 567-587. doi: 10.3934/dcds.2014.34.567

## Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces

 1 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, 361000, China 2 Institute of Applied Physics and Computational Mathematics, P.O.Box 8009-28, Beijing 100088 3 Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China

Received  September 2012 Revised  May 2013 Published  August 2013

We prove the global existence of weak solutions to the Navier-Stokes equations of compressible heat-conducting fluids in two spatial dimensions with initial data and external forces which are large and spherically symmetric. The solutions will be obtained as the limit of the approximate solutions in an annular domain. We first derive a number of regularity results on the approximate physical quantities in the fluid region'', as well as the new uniform integrability of the velocity and temperature in the entire space-time domain by exploiting the theory of the Orlicz spaces. By virtue of these a priori estimates we then argue in a manner similar to that in [Arch. Rational Mech. Anal. 173 (2004), 297-343] to pass to the limit and show that the limiting functions are indeed a weak solution which satisfies the mass and momentum equations in the entire space-time domain in the sense of distributions, and the energy equation in any compact subset of the fluid region''.
Citation: Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567
##### References:
 [1] R. A. Adams and J. John, "Sobolev Space," $2^{nd}$ edition, Academic Press, New York, 2005. [2] D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001. [3] R. Erban, On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow, Math. Meth. Appl. Sci., 26 (2003), 489-517. doi: 10.1002/mma.362. [4] E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26, Oxford Univ. Press, Oxford, 2004. [5] E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not integrable, Comment. Math. Univ. Carolinae, 42 (2001), 83-98. [6] E. Feireisl and A. Novotnỳ, "Singular Limits in Thermodynamics of Viscous Fluids," Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0. [7] E. Feireisl, A. Novotnỳ and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392. doi: 10.1007/PL00000976. [8] H. Frid and V. Shelukhin, Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry, SIAM J. Math. Anal., 31 (2000), 1144-1156. doi: 10.1137/S003614109834394X. [9] D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302. doi: 10.1512/iumj.1992.41.41060. [10] D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces, Arch. Rational Mech. Anal., 173 (2004), 297-343. doi: 10.1007/s00205-004-0318-5. [11] F. Jiang and Z. Tan, On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow, Math. Meth. Appl. Sci., 32 (2009), 2350-2367. doi: 10.1002/mma.1138. [12] S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl. (9), 82 (2003), 949-973. doi: 10.1016/S0021-7824(03)00015-1. [13] S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581. doi: 10.1007/PL00005543. [14] S. Jiang and P. Zhang, Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data, Indiana Univ. Math. J., 51 (2002), 345-355. doi: 10.1512/iumj.2002.51.2264. [15] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. [16] A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. [17] A. Kufner, O. John and S. Fučik, "Function Spaces," Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publ., Leyden; Academia, Prague, 1977. [18] P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10, Science Publications, The Clarendon Press, Oxford Univ. Press, New York, 1998. [19] J. Zhang, S. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Meth. Appl. Sci., 19 (2009), 833-875. doi: 10.1142/S0218202509003644.

show all references

##### References:
 [1] R. A. Adams and J. John, "Sobolev Space," $2^{nd}$ edition, Academic Press, New York, 2005. [2] D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001. [3] R. Erban, On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow, Math. Meth. Appl. Sci., 26 (2003), 489-517. doi: 10.1002/mma.362. [4] E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26, Oxford Univ. Press, Oxford, 2004. [5] E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not integrable, Comment. Math. Univ. Carolinae, 42 (2001), 83-98. [6] E. Feireisl and A. Novotnỳ, "Singular Limits in Thermodynamics of Viscous Fluids," Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0. [7] E. Feireisl, A. Novotnỳ and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392. doi: 10.1007/PL00000976. [8] H. Frid and V. Shelukhin, Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry, SIAM J. Math. Anal., 31 (2000), 1144-1156. doi: 10.1137/S003614109834394X. [9] D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302. doi: 10.1512/iumj.1992.41.41060. [10] D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces, Arch. Rational Mech. Anal., 173 (2004), 297-343. doi: 10.1007/s00205-004-0318-5. [11] F. Jiang and Z. Tan, On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow, Math. Meth. Appl. Sci., 32 (2009), 2350-2367. doi: 10.1002/mma.1138. [12] S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl. (9), 82 (2003), 949-973. doi: 10.1016/S0021-7824(03)00015-1. [13] S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581. doi: 10.1007/PL00005543. [14] S. Jiang and P. Zhang, Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data, Indiana Univ. Math. J., 51 (2002), 345-355. doi: 10.1512/iumj.2002.51.2264. [15] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. [16] A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. [17] A. Kufner, O. John and S. Fučik, "Function Spaces," Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publ., Leyden; Academia, Prague, 1977. [18] P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10, Science Publications, The Clarendon Press, Oxford Univ. Press, New York, 1998. [19] J. Zhang, S. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Meth. Appl. Sci., 19 (2009), 833-875. doi: 10.1142/S0218202509003644.
 [1] Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 [2] Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099 [3] Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure and Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459 [4] Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 [5] J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647 [6] Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215 [7] Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 [8] Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279 [9] Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $p$-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051 [10] Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic and Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015 [11] Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079 [12] Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643 [13] Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations and Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191 [14] Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 [15] Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873 [16] Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613 [17] Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603 [18] Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701 [19] Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080 [20] Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

2021 Impact Factor: 1.588