\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generic property of irregular sets in systems satisfying the specification property

Abstract Related Papers Cited by
  • Let $f$ be a continuous map on a compact metric space. In this paper, under the hypothesis that $f$ satisfies the specification property, we prove that the set consisting of those points for which the Birkhoff ergodic average does not exist is either residual or empty.
    Mathematics Subject Classification: Primary: 54H20; Secondary: 54E52.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Albeverio, M. Pratsiovytyi and G. Torbin, Topological and fractal properties of subsets of real numbers which are not normal, Bull. Sci. Math., 129 (2005), 615-630.doi: 10.1016/j.bulsci.2004.12.004.

    [2]

    I.-S. Baek and L. Olsen, Baire category and extremely non-normal points of invariant sets of IFS's, Discrete Contin. Dyn. Syst., 27 (2010), 935-943.doi: 10.3934/dcds.2010.27.935.

    [3]

    L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.doi: 10.1007/BF02773211.

    [4]

    L. Barreira, J. J. Li and C. VallsIrregular sets are residual, preprint.

    [5]

    R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.

    [6]

    J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.doi: 10.1090/S0002-9947-97-01873-4.

    [7]

    E. Chen, K. Tassilo and L. Shu, Topological entropy for divergence points, Ergod. Th. Dynam. Sys., 25 (2005), 1173-1208.doi: 10.1017/S0143385704000872.

    [8]

    M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Space," Lecture Notes in Mathematics, 527, Springer-Verlag, Berlin-New York, 1976.

    [9]

    A.-H. Fan, D.-J. Feng and J. Wu, Recurrence, dimensions and entropy, J. London Math. Soc. (2), 64 (2001), 229-244.doi: 10.1017/S0024610701002137.

    [10]

    A.-H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space, J. Stat. Phys., 99 (2000), 813-856.doi: 10.1023/A:1018643512559.

    [11]

    A.-H. Fan, L. M. Liao and J. Peyrière, Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst., 21 (2008), 1103-1128.doi: 10.3934/dcds.2008.21.1103.

    [12]

    D.-J. Feng, K.-S. Lau and J. Wu, Ergodic limits on the conformal repellers, Adv. Math., 169 (2002), 58-91.doi: 10.1006/aima.2001.2054.

    [13]

    J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz and A. Shaw, Iterated Cesàro averages, frequencies of digits and Baire category, Acta Arith., 144 (2010), 287-293.doi: 10.4064/aa144-3-6.

    [14]

    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.

    [15]

    J. J. Li, M. Wu and Y. Xiong, Hausdorff dimensions of the divergence points of self-similar measures with the open set condition, Nonlinearity, 25 (2012), 93-105.doi: 10.1088/0951-7715/25/1/93.

    [16]

    J. J. Li and M. Wu, Divergence points in systems satisfying the specification property, Discrete Contin. Dyn. Syst., 33 (2013), 905-920.

    [17]

    J. J. Li and M. Wu, The sets of divergence points of self-similar measures are residual, J. Math. Anal. Appl., 404 (2013), 429-437.doi: 10.1016/j.jmaa.2013.03.043.

    [18]

    L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc., 137 (2004), 43-53.doi: 10.1017/S0305004104007601.

    [19]

    L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl. (9), 82 (2003), 1591-1649.doi: 10.1016/j.matpur.2003.09.007.

    [20]

    J. C. Oxtoby, "Measure and Category," Springer, New York, 1996.

    [21]

    Ya. Pesin and B. Pitskel', Topological pressure and variational principle for noncompact sets, Functional Anal. Appl., 18 (1984), 307-318.

    [22]

    M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Commun. Math. Phys., 207 (1999), 145-171.doi: 10.1007/s002200050722.

    [23]

    D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Ency. Math. and Appl., Vol 5, Addison-Wesley Publishing Co., Reading, Mass., 1978.

    [24]

    F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergod. Th. Dynam. Sys., 23 (2003), 317-348.doi: 10.1017/S0143385702000913.

    [25]

    D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dynamical Systems, 25 (2010), 25-51.doi: 10.1080/14689360903156237.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return