February  2014, 34(2): 647-662. doi: 10.3934/dcds.2014.34.647

Topological entropy by unit length for the Ginzburg-Landau equation on the line

1. 

Université Internationale de Rabat, Technopolis 11 100 Sala el Jadida, Morocco

Received  March 2011 Revised  May 2013 Published  August 2013

In this paper we study the notion of topological entropy by unit length for the dynamical system given by the complex Ginzburg-Landau equation on the line (CGL). This equation has a global attractor $\mathcal{A}$ that attracts all the trajectories. We first prove the existence of the topological entropy by unit length for the topological dynamical system $(\mathcal{A},S)$ in a Hilbert space framework, where $S(t)$ is the semi-flow defined by CGL. Next we show that this topological entropy by unit length is bounded by the product of the upper fractal dimension per unit length (see [10]) with the expansion rate. Finally, we prove that this quantity is invariant for all $H^k$ metrics ($k\geq 0$).
Citation: N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647
References:
[1]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X.

[2]

M. Brin and G. Stuck, "Introduction to Dynamical Systems," Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511755316.

[3]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Apllications, Vol. 25, North Holland Publishing Co., Amsterdam, 1992.

[4]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Procceding of Royal Society of Edinburgh Sect. A, 116 (1990), 221-243. doi: 10.1017/S0308210500031498.

[5]

P. Collet and J.-P. Eckmann, Extensive properties of the complex Ginzburg-Landau equation, Commun. Math. Phys., 200 (1999), 699-722. doi: 10.1007/s002200050546.

[6]

P. Collet and J.-P. Eckmann, The definition and measurement of the topological entropy per unit volume in parabolic PDEs, Nonlinearity, 12 (1999), 451-473. doi: 10.1088/0951-7715/12/3/002.

[7]

P. Collet and J.-P. Eckmann, Topological entropy and $\varepsilon$-entropy for damped hyperbolic equations, Ann. Henri Poincaré, 1 (2000), 715-752. doi: 10.1007/PL00001013.

[8]

M. A. Efendiev and S. V. Zelik, The attractor of a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688. doi: 10.1002/cpa.1011.

[9]

M. A. Efendiev and S. V. Zelik, Upper and lower bounds for the Kolmogorov entropy of the attractor for the RDE in an unbounded domain, J. Dynam. Differential Equations, 14 (2002), 369-403. doi: 10.1023/A:1015130904414.

[10]

O. Goubet and N. Maaroufi, Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework, Commun. Pure Appl. Anal., 11 (2012), 1253-1267. doi: 10.3934/cpaa.2012.11.1253.

[11]

B. Hasselblatt and A. Katok, Principal structures, in "Handbook of Dynamical Systems, Vol. 1A," North-Holland, Amsterdam, (2002), 1-203. doi: 10.1016/S1874-575X(02)80003-0.

[12]

A. N. Kolmogorov and V. M. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces, Uspehi Mat. Nauk, 14 (1959), 3-86.

[13]

N. Maaroufi, "Quelques Proprietes Ergodiques de l'Attracteur Donne par le Systeme Dynamique Relatif a l'Equation de Ginzburg Landau Complexe Cubique sur un Domaine Non Borne," Ph.D thesis, 2010.

[14]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparaison, Nonlinearity, 8 (1995), 743-768. doi: 10.1088/0951-7715/8/5/006.

[15]

A. Mielke and S. V. Zelik, Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction-diffusion systems in $\mathbb{R}^{N}$, J. Dynam. Differential Equations, 19 (2007), 333-389. doi: 10.1007/s10884-006-9058-6.

[16]

A. Miranville and S. V. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations. Vol. IV," Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0.

[17]

H. Queffelec and C. Zuily, "Element d'Analyse," Paris, Dunod, 2002.

[18]

P. Taráč, P. Bollerman, A. Doelman, A. van Harten and E. S. Titi, Analyticity of essentially bounded solutions to semlinear parabolic systems and validity of the Ginzburg-Landau equation, SIAM J. Math. Anal., 27 (1996), 424-448. doi: 10.1137/S0036141094262518.

[19]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[20]

D. Turaev and S. V. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equations, Discrete Contin. Dyn. Syst., 28 (2010), 1713-1751. doi: 10.3934/dcds.2010.28.1713.

[21]

M. I. Vishik and V. V. Chepyzhov, Kolmogorov $\varepsilon$-entropy of attractors of reaction-diffusion systems, Mat. Sb., 189 (1998), 81-110. doi: 10.1070/SM1998v189n02ABEH000301.

[22]

P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

[23]

S. V. Zelik, An attractor of a nonlinear system of reaction-diffusion equations in $\mathbb{R}^{N}$ and estimates for its $\varepsilon$-entropy, Mat. Zametki, 65 (1999), 941-944. doi: 10.1007/BF02675597.

[24]

S. V. Zelik, Multiparameter semigroups and attractors of reaction-diffusion equations in $\mathbb{R}^{N}$, Tr. Mosk. Mat. Obs., 65 (2004), 114-174; translation in Trans. Moscow Math. Soc., (2004), 105-160.

[25]

S. V. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., 56 (2003), 584-637. doi: 10.1002/cpa.10068.

[26]

S. V. Zelik, Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains, J. Dynam. Differential Equations, 19 (2007), 1-74. doi: 10.1007/s10884-006-9007-4.

show all references

References:
[1]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X.

[2]

M. Brin and G. Stuck, "Introduction to Dynamical Systems," Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511755316.

[3]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Apllications, Vol. 25, North Holland Publishing Co., Amsterdam, 1992.

[4]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Procceding of Royal Society of Edinburgh Sect. A, 116 (1990), 221-243. doi: 10.1017/S0308210500031498.

[5]

P. Collet and J.-P. Eckmann, Extensive properties of the complex Ginzburg-Landau equation, Commun. Math. Phys., 200 (1999), 699-722. doi: 10.1007/s002200050546.

[6]

P. Collet and J.-P. Eckmann, The definition and measurement of the topological entropy per unit volume in parabolic PDEs, Nonlinearity, 12 (1999), 451-473. doi: 10.1088/0951-7715/12/3/002.

[7]

P. Collet and J.-P. Eckmann, Topological entropy and $\varepsilon$-entropy for damped hyperbolic equations, Ann. Henri Poincaré, 1 (2000), 715-752. doi: 10.1007/PL00001013.

[8]

M. A. Efendiev and S. V. Zelik, The attractor of a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688. doi: 10.1002/cpa.1011.

[9]

M. A. Efendiev and S. V. Zelik, Upper and lower bounds for the Kolmogorov entropy of the attractor for the RDE in an unbounded domain, J. Dynam. Differential Equations, 14 (2002), 369-403. doi: 10.1023/A:1015130904414.

[10]

O. Goubet and N. Maaroufi, Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework, Commun. Pure Appl. Anal., 11 (2012), 1253-1267. doi: 10.3934/cpaa.2012.11.1253.

[11]

B. Hasselblatt and A. Katok, Principal structures, in "Handbook of Dynamical Systems, Vol. 1A," North-Holland, Amsterdam, (2002), 1-203. doi: 10.1016/S1874-575X(02)80003-0.

[12]

A. N. Kolmogorov and V. M. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces, Uspehi Mat. Nauk, 14 (1959), 3-86.

[13]

N. Maaroufi, "Quelques Proprietes Ergodiques de l'Attracteur Donne par le Systeme Dynamique Relatif a l'Equation de Ginzburg Landau Complexe Cubique sur un Domaine Non Borne," Ph.D thesis, 2010.

[14]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparaison, Nonlinearity, 8 (1995), 743-768. doi: 10.1088/0951-7715/8/5/006.

[15]

A. Mielke and S. V. Zelik, Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction-diffusion systems in $\mathbb{R}^{N}$, J. Dynam. Differential Equations, 19 (2007), 333-389. doi: 10.1007/s10884-006-9058-6.

[16]

A. Miranville and S. V. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations. Vol. IV," Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0.

[17]

H. Queffelec and C. Zuily, "Element d'Analyse," Paris, Dunod, 2002.

[18]

P. Taráč, P. Bollerman, A. Doelman, A. van Harten and E. S. Titi, Analyticity of essentially bounded solutions to semlinear parabolic systems and validity of the Ginzburg-Landau equation, SIAM J. Math. Anal., 27 (1996), 424-448. doi: 10.1137/S0036141094262518.

[19]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[20]

D. Turaev and S. V. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equations, Discrete Contin. Dyn. Syst., 28 (2010), 1713-1751. doi: 10.3934/dcds.2010.28.1713.

[21]

M. I. Vishik and V. V. Chepyzhov, Kolmogorov $\varepsilon$-entropy of attractors of reaction-diffusion systems, Mat. Sb., 189 (1998), 81-110. doi: 10.1070/SM1998v189n02ABEH000301.

[22]

P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

[23]

S. V. Zelik, An attractor of a nonlinear system of reaction-diffusion equations in $\mathbb{R}^{N}$ and estimates for its $\varepsilon$-entropy, Mat. Zametki, 65 (1999), 941-944. doi: 10.1007/BF02675597.

[24]

S. V. Zelik, Multiparameter semigroups and attractors of reaction-diffusion equations in $\mathbb{R}^{N}$, Tr. Mosk. Mat. Obs., 65 (2004), 114-174; translation in Trans. Moscow Math. Soc., (2004), 105-160.

[25]

S. V. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., 56 (2003), 584-637. doi: 10.1002/cpa.10068.

[26]

S. V. Zelik, Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains, J. Dynam. Differential Equations, 19 (2007), 1-74. doi: 10.1007/s10884-006-9007-4.

[1]

O. Goubet, N. Maaroufi. Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1253-1267. doi: 10.3934/cpaa.2012.11.1253

[2]

Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339

[3]

Emmanuel Schenck. Exponential gaps in the length spectrum. Journal of Modern Dynamics, 2020, 16: 207-223. doi: 10.3934/jmd.2020007

[4]

Feng Luo. Geodesic length functions and Teichmuller spaces. Electronic Research Announcements, 1996, 2: 34-41.

[5]

Yuanhong Chen, Chao Ma, Jun Wu. Moving recurrent properties for the doubling map on the unit interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2969-2979. doi: 10.3934/dcds.2016.36.2969

[6]

Zongming Guo, Fangshu Wan. Weighted fourth order elliptic problems in the unit ball. Electronic Research Archive, 2021, 29 (6) : 3775-3803. doi: 10.3934/era.2021061

[7]

Shrey Sanadhya. A shrinking target theorem for ergodic transformations of the unit interval. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4003-4011. doi: 10.3934/dcds.2022042

[8]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[9]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[10]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[11]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[12]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[13]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[14]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056

[15]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit. The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6529-6546. doi: 10.3934/dcds.2020289

[16]

Michael Khanevsky. Hofer's length spectrum of symplectic surfaces. Journal of Modern Dynamics, 2015, 9: 219-235. doi: 10.3934/jmd.2015.9.219

[17]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[18]

Dongping Zhuang. Irrational stable commutator length in finitely presented groups. Journal of Modern Dynamics, 2008, 2 (3) : 499-507. doi: 10.3934/jmd.2008.2.499

[19]

Jiarong Peng, Xiangyong Zeng, Zhimin Sun. Finite length sequences with large nonlinear complexity. Advances in Mathematics of Communications, 2018, 12 (1) : 215-230. doi: 10.3934/amc.2018015

[20]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]