Citation: |
[1] |
S. Albeverio, M. Pratsiovytyi and G. Torbin, Singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their $s$-adic digits, Ukraïn. Mat. Zh., 57 (2005), 1163-1170.doi: 10.1007/s11253-006-0001-0. |
[2] |
S. Albeverio, M. Pratsiovytyi and G. Torbin, Topological and fractal properties of real numbers which are not normal, Bull. Sci. Math., 129 (2005), 615-630.doi: 10.1016/j.bulsci.2004.12.004. |
[3] |
I.-S. Baek and L. Olsen, Baire category and extremely non-normal points of invariant sets of IFS's, Discrete Contin. Dyn. Syst., 27 (2010), 935-943.doi: 10.3934/dcds.2010.27.935. |
[4] |
G. Barat, V. Berthé, P. Liardet and J. Thuswaldner, Dynamical directions in numeration, Numération, pavages, substitutions, Ann. Inst. Fourier (Grenoble), 56 (2006), 1987-2092.doi: 10.5802/aif.2233. |
[5] |
E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, (French) Palermo Rend., 27 (1909), 247-271. |
[6] |
K. Dajani and C. Kraaikamp, "Ergodic Theory of Numbers," Carus Mathematical Monographs, Vol. 29, Mathematical Association of America, Washington, DC, 2002. |
[7] |
K. Gröchenig and A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl., 1 (1994), 131-170.doi: 10.1007/s00041-001-4007-6. |
[8] |
J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz and A. Shaw, Iterated Cesàro averages, frequencies of digits, and Baire category, Acta Arith., 144 (2010), 287-293.doi: 10.4064/aa144-3-6. |
[9] |
D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding," Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511626302. |
[10] |
L. Olsen, Extremely non-normal continued fractions, Acta Arith., 108 (2003), 191-202.doi: 10.4064/aa108-2-8. |
[11] |
L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their $N$-adic expansion, Math. Proc. Cambridge Philos. Soc., 136 (2004), 139-165.doi: 10.1017/S0305004103007047. |
[12] |
L. Olsen, Applications of multifractal divergence points to some sets of $d$-tuples of numbers defined by their $N$-adic expansion, Bull. Sci. Math., 128 (2004), 265-289.doi: 10.1016/j.bulsci.2004.01.003. |
[13] |
L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc., 137 (2004), 43-53.doi: 10.1017/S0305004104007601. |
[14] |
L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. (2), 67 (2003), 103-122.doi: 10.1112/S0024610702003630. |
[15] |
T. Šalát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czechoslovak Math. J., 18 (93) (1968), 489-522. |
[16] |
T. Šalát, A remark on normal numbers, Rev. Roumaine Math. Pures Appl., 11 (1966), 53-56. |
[17] |
T. Šalát, Über die Cantorschen Reihen, Czechoslovak Math. J., 18 (93) (1968), 25-56. |
[18] |
B. Volkmann, Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. VI, Math. Z., 68 (1958), 439-449. |
[19] |
B. Volkmann, On non-normal numbers, Compositio Math., 16 (1964), 186-190. |