February  2014, 34(2): 709-732. doi: 10.3934/dcds.2014.34.709

On the derivative of the $\alpha$-Farey-Minkowski function

1. 

Department of Mathematics, University Walk, Clifton, Bristol BS8 1TW, United Kingdom

Received  February 2013 Revised  April 2013 Published  August 2013

In this paper we study the family of $\alpha$-Farey-Minkowski functions $\theta_\alpha$, for an arbitrary countable partition $\alpha$ of the unit interval with atoms which accumulate only at the origin, which are the conjugating homeomorphisms between each of the $\alpha$-Farey systems and the tent map. We first show that each function $\theta_\alpha$ is singular with respect to the Lebesgue measure and then demonstrate that the unit interval can be written as the disjoint union of the following three sets: $\Theta_0 : = \{x \in [0,1] : \theta_\alpha'(x)=0\}, \Theta_{\infty} : = \{ x \in [0,1] : \theta_\alpha'(x)=\infty \} $ and $\Theta_\sim : = \{ x \in [0,1] : \theta_\alpha'(x)\ does\ not\ exist \} $. The main result is that \[ \dim_{\mathrm{H}}(\Theta_\infty)=\dim_{\mathrm{H}}(\Theta_\sim)=\sigma_\alpha(\log2)<\dim_{\mathrm{H}}(\Theta_0)=1, \] where $\sigma_\alpha(\log2)$ denotes the Hausdorff dimension of the level set $\{x\in [0,1]:\Lambda(F_\alpha, x)=\log2\}$ and $\Lambda(F_\alpha, x)$ is the Lyapunov exponent of the map $F_\alpha$ at the point $x$. The proof of the theorem employs the multifractal formalism for $\alpha$-Farey systems.
Citation: Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709
References:
[1]

Israel J. Math., 116 (2000), 29-70. doi: 10.1007/BF02773211.  Google Scholar

[2]

Acta Arith., 74 (1996), 311-327.  Google Scholar

[3]

John Wiley & Sons, Ltd., Chichester, 1997.  Google Scholar

[4]

Trans. Amer. Math. Soc., 363 (2011), 313-330. doi: 10.1090/S0002-9947-2010-05326-7.  Google Scholar

[5]

Ergodic Theory Dynam. Systems, 32 (2012), 989-1017. doi: 10.1017/S0143385711000186.  Google Scholar

[6]

J. Reine Angew. Math., 605 (2007), 133-163. doi: 10.1515/CRELLE.2007.029.  Google Scholar

[7]

J. Number Theory, 128 (2008), 2663-2686. doi: 10.1016/j.jnt.2007.12.010.  Google Scholar

[8]

Gesammelte Abhandlungen, Vol. 2, 1911; reprinted by Chelsea, New York, (1967), 43-52. Google Scholar

[9]

Ph.D Thesis, University of St Andrews, 2011. Google Scholar

[10]

J. Math. Anal. Appl., 253 (2001), 107-125. doi: 10.1006/jmaa.2000.7064.  Google Scholar

[11]

J. Math. Anal. Appl., 329 (2007), 592-602. doi: 10.1016/j.jmaa.2006.06.082.  Google Scholar

[12]

Third edition, Prentice-Hall, New Jersey, 1988. Google Scholar

[13]

Trans. Amer. Math. Soc., 53 (1943), 427-439. doi: 10.1090/S0002-9947-1943-0007929-6.  Google Scholar

[14]

Nonlinearity, 22 (2009), 525-543. doi: 10.1088/0951-7715/22/3/001.  Google Scholar

show all references

References:
[1]

Israel J. Math., 116 (2000), 29-70. doi: 10.1007/BF02773211.  Google Scholar

[2]

Acta Arith., 74 (1996), 311-327.  Google Scholar

[3]

John Wiley & Sons, Ltd., Chichester, 1997.  Google Scholar

[4]

Trans. Amer. Math. Soc., 363 (2011), 313-330. doi: 10.1090/S0002-9947-2010-05326-7.  Google Scholar

[5]

Ergodic Theory Dynam. Systems, 32 (2012), 989-1017. doi: 10.1017/S0143385711000186.  Google Scholar

[6]

J. Reine Angew. Math., 605 (2007), 133-163. doi: 10.1515/CRELLE.2007.029.  Google Scholar

[7]

J. Number Theory, 128 (2008), 2663-2686. doi: 10.1016/j.jnt.2007.12.010.  Google Scholar

[8]

Gesammelte Abhandlungen, Vol. 2, 1911; reprinted by Chelsea, New York, (1967), 43-52. Google Scholar

[9]

Ph.D Thesis, University of St Andrews, 2011. Google Scholar

[10]

J. Math. Anal. Appl., 253 (2001), 107-125. doi: 10.1006/jmaa.2000.7064.  Google Scholar

[11]

J. Math. Anal. Appl., 329 (2007), 592-602. doi: 10.1016/j.jmaa.2006.06.082.  Google Scholar

[12]

Third edition, Prentice-Hall, New Jersey, 1988. Google Scholar

[13]

Trans. Amer. Math. Soc., 53 (1943), 427-439. doi: 10.1090/S0002-9947-1943-0007929-6.  Google Scholar

[14]

Nonlinearity, 22 (2009), 525-543. doi: 10.1088/0951-7715/22/3/001.  Google Scholar

[1]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[2]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[3]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[4]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

[5]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[6]

Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035

[7]

Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021044

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[10]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[11]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[12]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[13]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[14]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[15]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[16]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[17]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

[18]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[19]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[20]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]