\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The defocusing $\dot{H}^{1/2}$-critical NLS in high dimensions

Abstract Related Papers Cited by
  • We consider the defocusing $\dot{H}^{1/2}$-critical nonlinear Schrödinger equation in dimensions $d\geq 4.$ In the spirit of Kenig and Merle [10], we combine a concentration-compactness approach with the Lin--Strauss Morawetz inequality to prove that if a solution $u$ is bounded in $\dot{H}^{1/2}$ throughout its lifespan, then $u$ is global and scatters.
    Mathematics Subject Classification: Primary: 35Q55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bégout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282.doi: 10.1090/S0002-9947-07-04250-X.

    [2]

    R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The $L^2$-critical case, Trans. Amer. Math. Soc., 359 (2007), 33-62.doi: 10.1090/S0002-9947-06-03955-9.

    [3]

    T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.doi: 10.1016/0362-546X(90)90023-A.

    [4]

    T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

    [5]

    M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.doi: 10.1016/0022-1236(91)90103-C.

    [6]

    J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.doi: 10.1007/BF02099195.

    [7]

    J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.doi: 10.1007/s00220-008-0529-y.

    [8]

    M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.doi: 10.1353/ajm.1998.0039.

    [9]

    C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.doi: 10.1007/s00222-006-0011-4.

    [10]

    C. E. Kenig and F. Merle, Scattering for $\dotH^{1/2)$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc. 362 (2010), 1937-1962.doi: 10.1090/S0002-9947-09-04722-9.

    [11]

    S. Keraani, On the defect of compactness for the Strichartz estimates for the Schrödinger equations, J. Diff. Eq., 175 (2001), 353-392.doi: 10.1006/jdeq.2000.3951.

    [12]

    S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192.doi: 10.1016/j.jfa.2005.10.005.

    [13]

    R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.doi: 10.4171/JEMS/180.

    [14]

    R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity, to appear in proceedings of the Clay summer school "Evolution Equations,'' June 23-July 18, Eidgenössische Technische Hochschule, Zürich, 2008.

    [15]

    R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.doi: 10.1353/ajm.0.0107.

    [16]

    R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering, Comm. Partial Differential Equations, 35 (2010), 945-987.doi: 10.1080/03605301003717084.

    [17]

    R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, Proc. Amer. Math. Soc., 139 (2011), 1805-1817.doi: 10.1090/S0002-9939-2010-10615-9.

    [18]

    J. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., 30 (1978), 245-263.doi: 10.1016/0022-1236(78)90073-3.

    [19]

    F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2$D$, Int. Math. Res. Not., (1998), 399-425.doi: 10.1155/S1073792898000270.

    [20]

    J. MurphyInter-critical NLS: Critical $\dotH^s$-bounds imply scattering, arXiv:1209.4582.

    [21]

    S. Shao, Maximizers for the Strichartz inequalities and Sobolev-Strichartz inequalities for the Schrödinger equation, Electron. J. Differential Equations, (2009), 13 pp.

    [22]

    R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.doi: 10.1215/S0012-7094-77-04430-1.

    [23]

    T. Tao, M. Visan and X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math., 20 (2008), 881-919.doi: 10.1515/FORUM.2008.042.

    [24]

    T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202.doi: 10.1215/S0012-7094-07-14015-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(58) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return