-
Previous Article
Goldstein-Wentzell boundary conditions: Recent results with Jerry and Gisèle Goldstein
- DCDS Home
- This Issue
-
Next Article
On the derivative of the $\alpha$-Farey-Minkowski function
The defocusing $\dot{H}^{1/2}$-critical NLS in high dimensions
1. | Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, United States |
References:
[1] |
P. Bégout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282.
doi: 10.1090/S0002-9947-07-04250-X. |
[2] |
R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The $L^2$-critical case, Trans. Amer. Math. Soc., 359 (2007), 33-62.
doi: 10.1090/S0002-9947-06-03955-9. |
[3] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.
doi: 10.1016/0362-546X(90)90023-A. |
[4] |
T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[5] |
M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.
doi: 10.1016/0022-1236(91)90103-C. |
[6] |
J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[7] |
J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.
doi: 10.1007/s00220-008-0529-y. |
[8] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[9] |
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[10] |
C. E. Kenig and F. Merle, Scattering for $\dotH^{1/2)$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc. 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[11] |
S. Keraani, On the defect of compactness for the Strichartz estimates for the Schrödinger equations, J. Diff. Eq., 175 (2001), 353-392.
doi: 10.1006/jdeq.2000.3951. |
[12] |
S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192.
doi: 10.1016/j.jfa.2005.10.005. |
[13] |
R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.
doi: 10.4171/JEMS/180. |
[14] |
R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity, to appear in proceedings of the Clay summer school "Evolution Equations,'' June 23-July 18, Eidgenössische Technische Hochschule, Zürich, 2008. |
[15] |
R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.
doi: 10.1353/ajm.0.0107. |
[16] |
R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering, Comm. Partial Differential Equations, 35 (2010), 945-987.
doi: 10.1080/03605301003717084. |
[17] |
R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, Proc. Amer. Math. Soc., 139 (2011), 1805-1817.
doi: 10.1090/S0002-9939-2010-10615-9. |
[18] |
J. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., 30 (1978), 245-263.
doi: 10.1016/0022-1236(78)90073-3. |
[19] |
F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2$D$, Int. Math. Res. Not., (1998), 399-425.
doi: 10.1155/S1073792898000270. |
[20] |
J. Murphy, Inter-critical NLS: Critical $\dotH^s$-bounds imply scattering,, , ().
|
[21] |
S. Shao, Maximizers for the Strichartz inequalities and Sobolev-Strichartz inequalities for the Schrödinger equation, Electron. J. Differential Equations, (2009), 13 pp. |
[22] |
R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
[23] |
T. Tao, M. Visan and X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math., 20 (2008), 881-919.
doi: 10.1515/FORUM.2008.042. |
[24] |
T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202.
doi: 10.1215/S0012-7094-07-14015-8. |
show all references
References:
[1] |
P. Bégout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282.
doi: 10.1090/S0002-9947-07-04250-X. |
[2] |
R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The $L^2$-critical case, Trans. Amer. Math. Soc., 359 (2007), 33-62.
doi: 10.1090/S0002-9947-06-03955-9. |
[3] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.
doi: 10.1016/0362-546X(90)90023-A. |
[4] |
T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[5] |
M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.
doi: 10.1016/0022-1236(91)90103-C. |
[6] |
J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[7] |
J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.
doi: 10.1007/s00220-008-0529-y. |
[8] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[9] |
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[10] |
C. E. Kenig and F. Merle, Scattering for $\dotH^{1/2)$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc. 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[11] |
S. Keraani, On the defect of compactness for the Strichartz estimates for the Schrödinger equations, J. Diff. Eq., 175 (2001), 353-392.
doi: 10.1006/jdeq.2000.3951. |
[12] |
S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192.
doi: 10.1016/j.jfa.2005.10.005. |
[13] |
R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.
doi: 10.4171/JEMS/180. |
[14] |
R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity, to appear in proceedings of the Clay summer school "Evolution Equations,'' June 23-July 18, Eidgenössische Technische Hochschule, Zürich, 2008. |
[15] |
R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.
doi: 10.1353/ajm.0.0107. |
[16] |
R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering, Comm. Partial Differential Equations, 35 (2010), 945-987.
doi: 10.1080/03605301003717084. |
[17] |
R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, Proc. Amer. Math. Soc., 139 (2011), 1805-1817.
doi: 10.1090/S0002-9939-2010-10615-9. |
[18] |
J. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., 30 (1978), 245-263.
doi: 10.1016/0022-1236(78)90073-3. |
[19] |
F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2$D$, Int. Math. Res. Not., (1998), 399-425.
doi: 10.1155/S1073792898000270. |
[20] |
J. Murphy, Inter-critical NLS: Critical $\dotH^s$-bounds imply scattering,, , ().
|
[21] |
S. Shao, Maximizers for the Strichartz inequalities and Sobolev-Strichartz inequalities for the Schrödinger equation, Electron. J. Differential Equations, (2009), 13 pp. |
[22] |
R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
[23] |
T. Tao, M. Visan and X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math., 20 (2008), 881-919.
doi: 10.1515/FORUM.2008.042. |
[24] |
T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202.
doi: 10.1215/S0012-7094-07-14015-8. |
[1] |
Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127 |
[2] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[3] |
Xuan Liu, Ting Zhang. $ H^2 $ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28 (2) : 777-794. doi: 10.3934/era.2020039 |
[4] |
Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377 |
[5] |
Van Duong Dinh, Sahbi Keraani. The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2837-2876. doi: 10.3934/dcdss.2020407 |
[6] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
[7] |
Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183 |
[8] |
Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122 |
[9] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 |
[10] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[11] |
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023 |
[12] |
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37 |
[13] |
Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803 |
[14] |
Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 |
[15] |
Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481 |
[16] |
Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091 |
[17] |
Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909 |
[18] |
Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921 |
[19] |
Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389 |
[20] |
Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]