February  2014, 34(2): 869-882. doi: 10.3934/dcds.2014.34.869

Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations

1. 

College of Mathematics and Information Science, and Hebei Key Laboratory of Computational Mathematics and Applications, Hebei Normal University, Shijiazhuang, 050024, China

Received  July 2012 Revised  May 2013 Published  August 2013

In this paper, $C^0$ random perturbations of a partially hyperbolic diffeomorphism are considered. It is shown that a partially hyperbolic diffeomorphism is quasi-stable under such perturbations.
Citation: Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869
References:
[1]

L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, New York, 1998.

[2]

M. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Math. USSR-Izv., 8 (1974), 177-218. doi: 10.1070/IM1974v008n01ABEH002101.

[3]

A. Fathi, M. Herman and J. Yoccoz, A proof of Pesin's stable manifold theorem, in "Geometric Dynamics," Lect. Notes in Math., 1007, Springer-Verlag, Berlin-Heidelberg, (1983), 177-215. doi: 10.1007/BFb0061417.

[4]

M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019. doi: 10.1090/S0002-9904-1970-12537-X.

[5]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lect. Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977.

[6]

H. Hu and Y. Zhu, Quasi-stability of partially hyperbolic diffeomorphisms, to appear in Tran. Amer. Math. Soc., arXiv:1210.4766.

[7]

Y. Kifer, "Random Perturbations of Dynamical Systems," Progress in Probability and Statistics, 16, Birkhäuser Boston, Inc., Boston, MA, 1988. doi: 10.1007/978-1-4615-8181-9.

[8]

P.-D. Liu, Dynamics of random transformations: Smooth ergodic theory, Ergo. Theo. Dyn. Syst., 21 (2001), 1279-1319. doi: 10.1017/S0143385701001614.

[9]

P.-D. Liu, Random perturbations of Axiom A basic sets, J. Stat. Phys., 90 (1998), 467-490. doi: 10.1023/A:1023280407906.

[10]

P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems," Lect. Notes in Math., 1606, Springer-Verlag, Berlin, 1995.

[11]

Q. X. Liu and P. D. Liu, Topological stability of hyperbolic sets of flows under random perturbations, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 117-127. doi: 10.3934/dcdsb.2010.13.117.

[12]

Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity," Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004. doi: 10.4171/003.

[13]

P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78. doi: 10.1016/0040-9383(70)90051-0.

[14]

Y. Zhu, J. Zhang and L. He, Shadowing and inverse shadowing for $C^1$ endomorphisms, Acta Mathematica Sinica (Engl. Ser.), 22 (2006), 1321-1328. doi: 10.1007/s10114-005-0739-6.

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, New York, 1998.

[2]

M. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Math. USSR-Izv., 8 (1974), 177-218. doi: 10.1070/IM1974v008n01ABEH002101.

[3]

A. Fathi, M. Herman and J. Yoccoz, A proof of Pesin's stable manifold theorem, in "Geometric Dynamics," Lect. Notes in Math., 1007, Springer-Verlag, Berlin-Heidelberg, (1983), 177-215. doi: 10.1007/BFb0061417.

[4]

M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019. doi: 10.1090/S0002-9904-1970-12537-X.

[5]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lect. Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977.

[6]

H. Hu and Y. Zhu, Quasi-stability of partially hyperbolic diffeomorphisms, to appear in Tran. Amer. Math. Soc., arXiv:1210.4766.

[7]

Y. Kifer, "Random Perturbations of Dynamical Systems," Progress in Probability and Statistics, 16, Birkhäuser Boston, Inc., Boston, MA, 1988. doi: 10.1007/978-1-4615-8181-9.

[8]

P.-D. Liu, Dynamics of random transformations: Smooth ergodic theory, Ergo. Theo. Dyn. Syst., 21 (2001), 1279-1319. doi: 10.1017/S0143385701001614.

[9]

P.-D. Liu, Random perturbations of Axiom A basic sets, J. Stat. Phys., 90 (1998), 467-490. doi: 10.1023/A:1023280407906.

[10]

P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems," Lect. Notes in Math., 1606, Springer-Verlag, Berlin, 1995.

[11]

Q. X. Liu and P. D. Liu, Topological stability of hyperbolic sets of flows under random perturbations, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 117-127. doi: 10.3934/dcdsb.2010.13.117.

[12]

Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity," Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004. doi: 10.4171/003.

[13]

P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78. doi: 10.1016/0040-9383(70)90051-0.

[14]

Y. Zhu, J. Zhang and L. He, Shadowing and inverse shadowing for $C^1$ endomorphisms, Acta Mathematica Sinica (Engl. Ser.), 22 (2006), 1321-1328. doi: 10.1007/s10114-005-0739-6.

[1]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[2]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[3]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[4]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[5]

Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021276

[6]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[7]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[8]

Qiuxia Liu, Peidong Liu. Topological stability of hyperbolic sets of flows under random perturbations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 117-127. doi: 10.3934/dcdsb.2010.13.117

[9]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[10]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[11]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[12]

Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641

[13]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[14]

Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

[15]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[16]

Marcelo Sobottka. Topological quasi-group shifts. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77

[17]

Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003

[18]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[19]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems and Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[20]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 945-976. doi: 10.3934/dcdsb.2021076

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]